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A Hessian for Gaussian Mixture Likelihoods in
Nonlinear Least Squares

Vassili Korotkine , Mitchell Cohen , and James Richard Forbes , Member, IEEE

Abstract—This letter proposes a novel Hessian approximation
for Maximum a Posteriori estimation problems in robotics involv-
ing Gaussian mixture likelihoods. Previous approaches manipulate
the Gaussian mixture likelihood into a form that allows the problem
to be represented as a nonlinear least squares (NLS) problem. The
resulting Hessian approximation used within NLS solvers from
these approaches neglects certain nonlinearities. The proposed
Hessian approximation is derived by setting the Hessians of the
Gaussian mixture component errors to zero, which is the same
starting point as for the Gauss-Newton Hessian approximation for
NLS, and using the chain rule to account for additional nonlin-
earities. The proposed Hessian approximation results in improved
convergence speed and uncertainty characterization for simulated
experiments, and similar performance to the state of the art on
real-world experiments. A method to maintain compatibility with
existing solvers, such as ceres, is also presented.

Index Terms—Localization, optimization and optimal control,
probabilistic inference, sensor fusion, SLAM.

I. INTRODUCTION AND RELATED WORK

E STIMATING the state of a system from noisy and incom-
plete sensor data is a central task for autonomous sys-

tems. To describe inherent uncertainty in the measurements and
state, probabilistic tools are required. Gaussian measurement
likelihoods are commonly used in state estimation, allowing
estimation problems to be easily formulated as instances of
nonlinear least squares (NLS) optimization [1, §4.3]. The NLS
formulations for state estimation stem from considering the
negative log-likelihood (NLL) of the Gaussian, allowing a can-
cellation between the logarithm and the Gaussian exponent.
Furthermore, the structure of NLS problems allows for the use
of efficient solvers such as ceres [2], whereas more general
optimizers or non-parametric methods [3] may be more compu-
tationally demanding. Therefore, the NLS structure, which for
many problems arises from Gaussianity of the error model, is
highly desirable. However, in practice, many sensor models are
highly non-Gaussian, as in underwater acoustic positioning [4],
or subsea Simultaneous Localization and Mapping (SLAM) [5].
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Even when the sensor characteristics are well-modeled by
Gaussian distributions, multimodal error distributions arise in
real-world situations involving ambiguity. Examples include
simultaneous localization and mapping (SLAM) with unknown
data associations [6], 3D multi-object tracking [7], and loop-
closure ambiguity in pose-graph optimization [8]. In such cases,
Gaussian measurement likelihoods are insufficient, and realizing
robust and safe autonomy requires more accurate modeling of
the underlying distributions. A popular parametric model used
to represent multimodal distributions is the Gaussian mixture
model (GMM), composed of a weighted sum of Gaussian
components [9, §2.3.9]. Extensions of the incremental smooth-
ing and mapping framework iSAM2, such as multi-hypothesis
iSAM [10], have been developed to represent ambiguity in
state estimation problems. However, these approaches are in-
compatible with standard NLS optimization methods and re-
quire a dedicated solver. Hence, other research has focused
on incorporating GMM measurement likelihoods for use in
standard NLS optimization frameworks. In the GMM case, the
NLL does not simplify since the logarithm cannot cancel with
the Gaussian exponents, meaning that GMMs are not directly
compatible with NLS solvers. A common method to overcome
this is the Max-Mixture, introduced by Olson et al. [11], which
approximates the summation over Gaussians with a maximum
operator, reducing the problem back to a single Gaussian. This
technique allows the problem to be cast into an NLS form at the
cost of introducing additional local minima. Rosen et al. [12]
introduce the extension of Robust Incremental least-Squares
Estimation (RISE) to non-Gaussian models, which allows for
error terms with arbitrary distributions to be cast into instances
of NLS minimization. The application of the framework in [12]
to GMMs error terms is presented in Pfeifer et al. [13] and called
the Sum-Mixture method. While the approach in [12] works well
for its intended scope, its application to GMMs results in issues
when iterative optimization methods are used. Common iterative
methods for solving NLS problems, such as Gauss-Newton,
rely on an approximation of the Hessian of the cost function.
Accuracy of the Hessian approximation manifests itself in con-
vergence of the algorithm, since it is used to compute the step
in NLS algorithms. Furthermore, the Hessian approximation
can affect consistency, since the Laplace approximation [9, Sec.
4.4] uses the Hessian to provide a covariance on the estimate
computed using the NLS algorithm.

When the Sum-Mixture approach is used in conjunction
with such optimization techniques, the resulting Hessian
approximation is inaccurate, leading to degraded performance.
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Fig. 1. Comparison of the Hessian approximation for a Gaussian mixture
factor consisting of two components, both centered around zero but with different
covariances. For a scalar cost and state variable, the Hessian is also scalar. When
substituted into a local optimization method, a better Hessian approximation
results in better convergence. In particular, the proposed Hessian (orange) is
much closer visually to the exact Hessian (green) than the Max-Mixture (blue)
and Max-Sum-Mixture (yellow) approaches.

This inaccuracy is pointed out by Pfeifer et al. in [13], but
not explained theoretically. Pfeifer et al. [13] then propose an
alternative to the Sum-Mixture approach, termed the Max-Sum-
Mixture approach, which is a hybrid between the Max-Mixture
and Sum-Mixture approaches. The dominant component of the
mixture is factored out, creating a Max-Mixture error term,
while the remaining non-dominant factor is treated using the
approach of Rosen et al. [12]. The Hessian contribution for the
non-dominant factor is inaccurate in a similar fashion as that of
the Sum-Mixture, and improving on this aspect is the focus of
this letter.

The contribution of this letter is a novel Hessian approxima-
tion for NLS problems involving GMM terms. The proposed
Hessian approximation is derived by using the Gauss-Newton
Hessian approximation for the component errors corresponding
to each component of the GMM, and using the chain rule to
take into account the additional nonlinearities. This approach
is similar in spirit to how the robust loss nonlinearity is treated
when deriving the Triggs correction proposed in [14] and used
in the ceres library [2]. The proposed Hessian approximation
has better mathematical properties in the sense that all mixture
components contribute in the same way to the Hessian, without
treating the dominant mixture component in a different frame-
work than the rest, unlike other state-of-the-art approaches.
Improvements to Hessian accuracy can therefore be expected
in cases where multiple mixture components overlap. Further-
more, traditional NLS solvers do not allow the user to specify
a separate Hessian, only requiring an error definition and its
corresponding Jacobian. Therefore, this letter also proposes a
method of defining an error and Jacobian that uses the proposed
Hessian while maintaining compatibility with the NLS solver.

The proposed Hessian approximation is showcased in Fig. 1
for a 1D example, where it is visually more accurate compared
to state of the art. Performance of the proposed method is
validated on a toy problem, a simulated point-set registration
problem [13], [15] and on a SLAM problem with unknown data
associations on the “Lost in the Woods” dataset [16]. The
implementation is open-sourced at https://github.com/

decargroup/hessian_sum_mixtures and uses the navlie
NLS solver [17].

The rest of this letter is organized as follows. Newton’s method
and the Gauss-Newton Hessian approximation for NLS are
presented in Section II. Section III presents Gaussian mixtures,
the difficulties in applying NLS to Gaussian mixtures, as well as
a review of the previous approaches to solving this problem.
Section IV discusses the reasons for the Hessian inaccuracy
of existing methods, and Section V presents the proposed
approach. Section VI describes how to maintain compability
with traditional NLS solvers while using the proposed Hessian.
Section VII presents simulation and experimental results high-
lighting the benefits of the proposed approach.

II. THEORETICAL BACKGROUND

Popular optimization methods used for state estimation are
reviewed to motivate the improvement of the Hessian approx-
imation used. Furthermore, the link to NLL minimization of
Gaussian probabilities is reviewed, while Section III presents
the extension to GMMs.

A. Newton’s Method

Newton’s method is a local optimization method that itera-
tively minimizes a quadratic approximation to the loss func-
tion [1, §4.3.1]. Denoting the optimization variable as x ∈ R

n

and the loss function to be minimized as J(x), Newton’s method
begins with an initial guess x(0), and iteratively updates the
optimization variable using x(i+1) = x(i) + α(i)Δx(i) where
α(i) is a user-defined step size andΔx(i) is the descent direction.
Setting the gradient of the local quadratic approximation of the
loss at x(i) to zero results in the descent direction being given
by [18, §2.2]

∂2J(x)

∂x∂x� Δx = −∂J(x)

∂xT
, (1)

where ∂J(x)
∂x ∈ R

1×n and ∂2J(x)
∂x∂x� ∈ R

n×n are the loss Jacobian
and Hessian respectively, and are evaluated at the current iterate

x(i). The notation ∂J(x)
∂xT =

(
∂J(x)
∂x

)T
is used throughout this

letter. The iterate x(i) is updated and the process is iterated to
convergence. The main drawbacks of this method are the need to
compute the Hessian, as well as the requirement for the Hessian
to be positive definite. The Hessian is only guaranteed to be
positive semidefinite for convex losses [19, §3.1.4], which are
infrequent in robotics applications.

B. Gauss-Newton Method

The Gauss-Newton method is an optimization approach ap-
plicable to problems that have a NLS structure. This structure is
leveraged to form an approximate Hessian that is in turn used in
the Newton step (1). The loss function is written as the sum of
squared error terms,

J(x) =

nf∑
i=1

Ji(x) =

nf∑
i=1

1

2
ei(x)

Tei(x), (2)
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where Ji(x) denotes a single summand, nf is the number of
summands, and ei(x) ∈ R

ne,i . The Jacobian and Hessian are
computed using the chain rule,

∂J(x)

∂x
=

nf∑
i=1

∂J(x)

∂ei

∂ei
∂x

, (3)

∂2J(x)

∂x∂x� =

nf∑
i=1

⎛
⎝∂ei

∂x

T ∂ei
∂x

+

nei∑
j=1

ei,j
∂2ei,j
∂x∂x�

⎞
⎠ , (4)

where the argumentxhas been dropped in writingei. The Gauss-
Newton approximation sets the second term of (4) to zero, such
that

∂2J(x)

∂x∂x� ≈ HGN =

nf∑
i=1

∂ei
∂x

T ∂ei
∂x

, (5)

where HGN is the Hessian approximation made by Gauss-
Newton. For an error term ei(x) affine in x, this approximation
is exact, and the algorithm converges in a single iteration.

C. Maximum a Posteriori Estimation

Maximum a Posteriori (MAP) estimation seeks to estimate the
system state x ∈ R

n by maximizing the posterior probability [1,
Sec. 3.1.2], which for Gaussian error models results in the
optimization problem

x̂ = arg min
x

nf∑
i=1

− logN (ηi(x);μi,Ri) , (6)

where N (ηi;μi,Ri) is a Gaussian probability density function
(PDF) in the errorηi with meanμi and covarianceRi. The MAP
estimation problem results in an NLS problem of the form (2),
with the the normalized error ei(x) obtained through the change
of variables

ei(x) =
√
R−1

i (ηi(x)− μi). (7)

For non-Gaussian error models, the Gaussian in (6) is replaced
by an arbitrary PDF p(ηi) resulting in a more general summand
expression Ji(x) = − log p(ηi) + ci in (2). The constant ci
absorbs extraneous normalization constants from − log p(ηi)
that do not affect the optimization.

III. GAUSSIAN MIXTURE ERROR TERMS

A possible choice for the error model probability pi(·) is a
Gaussian mixture model. Gaussian mixture models are the sum
ofnk weighted Gaussian components, allowing for a wide range
of arbitrary probability distributions to be easily represented.
The expression for a single Gaussian mixture term, with the
term index i omitted for readability, is given by

p(x) =

nk∑
k=1

wkN (ηk(x);μk,Rk) , (8)

where wk is the weight of the k’th Gaussian component. Note
that here the sum is over components, whereas in Section II the
sums considered are over problem error terms, of which only

a single one is now considered. To find an expression of the
NLL for error models of the form (8), first let αk be the weight
normalized by covariance, written as αk = wk det(Rk)

−1/2.
Then, dropping state- and covariance-independent normaliza-
tion constants and using the change of variables (7) yields the
expression for the corresponding summand given by

JGMM(x) = − log p(x) + c (9)

= − log

nk∑
k=1

αk exp

(
−1

2
ek(x)

Tek(x)

)
. (10)

The summand corresponding to a Gaussian mixture model NLL,
given by (10), is not of the form of a standard NLS problem
in (2). Unlike with Gaussian error terms, an NLS problem cannot
be directly obtained, since the logarithm does not cancel the
exponent. Hence, standard NLS optimization methods, such
as Gauss-Newton, are not directly applicable to problems with
Gaussian mixture error terms. Three existing approaches have
been proposed to utilize Gaussian mixture terms within the
framework of NLS, as discussed in the following sections.

A. Max-Mixtures

The Max-Mixture approach, first introduced in Olson
et al. [11], replaces the summation in (10) with a max operator,
such that the NLL is given by

− log pmax(x) = − log

(
max

k
αk exp

(
−1

2
ek(x)

Tek(x)

))
.

(11)

The key is that the max operator and the logarithm may be
swapped, allowing the logarithm to be pushed inside the max
operator to yield the Max-Mixture error, given by

− log pmax(x) = − logαk +
1

2
ek∗(x)Tek∗(x), (12)

where

k∗ = arg max
k

αk exp

(
−1

2
ek(x)

Tek(x)

)
(13)

is the integer index of the dominant mixture component at any
given x. The Max-Mixture error in (12) is in the standard NLS
form, and methods such as Gauss-Newton can be used to solve
the problem.

B. Sum-Mixtures

A general method for treating non-Gaussian likelihoods in
NLS is proposed in Rosen et al. [12]. For a general non-
Gaussian NLL − log pnon-gauss(x), the corresponding NLS error
enon-gauss(x) is derived by writing the relationship

JSM(x) = − log pnon-gauss(x) + c (14)

=
1

2

(√
log γSM − log pnon-gauss(x)

)2

, (15)

where γSM is a normalization constant chosen such that γSM ≥
pnon-gauss(x) to ensure that the square root argument is always
positive. In this case, the constant c absorbs the constant offset
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that is added by the normalization constant. The expression (15)
allows the error definition

enon-gauss(x) =
√
log γSM − log pnon-gauss(x). (16)

The Sum-Mixture approach consists of applying this approach
to the Gaussian mixture case,

JSM(x) =
1

2
e2SM(x) (17)

=
1

2

(
√
2

√
− log

1

γSM

∑nk

k=1
αk exp

(
−1

2
eTkek

))2

.

(18)

Ensuring positivity of the square root argument can be achieved
by setting the normalization constant to γSM =

∑nk

k=1 αk [20].

C. Max-Sum-Mixtures

The Max-Sum-Mixture is introduced by Pfeifer et al. [13],
and is a hybrid between the Max-Mixture and Sum-Mixture
approaches. The dominant component of the mixture is factored
out such that the corresponding summand is given by

JMSM(x) =
1

2
eTk∗ek∗

− log

nk∑
k=1

αk exp

(
−1

2
eTkek +

1

2
eTk∗ek∗

)
. (19)

The first term of (19) is analogous to the Max-Mixture case. The
second term is treated using the Sum-Mixture approach,

e2(x) =
√
2

√
− log

1

γMSM

∑nk

k=1

αk

αk∗
exp

(
−eTkek + eTk∗ek∗

)
,

(20)

where γMSM is chosen as γMSM = nk max αk

αk∗ + δ. The param-
eter δ > 0 is a damping constant [20] that dampens the influence
of this nonlinear term in the optimization.

IV. INACCURACY OF THE NON-DOMINANT COMPONENT

MAX-SUM-MIXTURE HESSIAN

NLS problems are defined by the choice of error. Different
choices of error may be made, which in turn defines the Gauss-
Newton Hessian approximation. Because of the Gaussian noise
assumption in most robotics problems, the error choice is natural
because the negative log-likelihood is quadratic. However, since
GMMs do not yield a quadratic log-likelihood, there is no natural
error choice. The Sum-Mixture is one such error choice but
yields an inaccurate Hessian approximation. The inaccuracy is
made clear by considering a problem with a single Gaussian
mixture error term of the form (8), having a single mode.
The cost function is given by J(x) = 1

2e(x)
Te(x). When the

Sum-Mixture formulation is applied to this problem, the cost
function becomes

J(x) =
1

2
eSM(x)2, (21)

with eSM(x) =
√
eT(x)e(x). Even for a Gaussian likelihood

problem that is easily solved by Gauss-Newton in its origi-
nal formulation, since the error eSM(x) is a scalar, the Sum-
Mixture approach results in a rank one Hessian approxima-
tion (5) for the corresponding summand. For state dimension
n > 1, the Hessian approximation is non-invertible and the
Newton update (1) fails. While this is not an issue within the
original application in [12], the Hessian approximation when
applied to mixtures is inaccurate as demonstrated with this base
case.

The fundamental reason for this inaccuracy is that higher-level
terms in the NLS Hessian (4) are neglected. Due to the added
nonlinearity eSM(x) =

√
eT(x)e(x), terms get absorbed from

the left term of (4) into the right one and end up neglected. Even
for well-behaved component errors, the additional nonlinearity
imposed by the LogSumExp expression inside the square root
in (18), together with the square root itself, make it such that
the Gauss-Newton approximation is inaccurate, as demonstrated
by the unimodal single-factor case. The Max-Sum-Mixture ap-
proach mostly addresses the shortcomings of the Sum-Mixture
method by extracting the dominant component.

However, the non-dominant components in the second term
of (19) are still subjected to the same treatment. Their contri-
bution to the overall Hessian is thus inaccurate, leading to the
discrepancies shown in Fig. 1.

V. PROPOSED APPROACH: HESSIAN-SUM-MIXTURE

The proposed approach is termed the “Hessian-Sum-Mixture”
(HSM) method and improves on previous formulations by
proposing a Hessian that takes into account the nonlinearity
of the LogSumExp expression in the GMM NLL (10), while
keeping the Gauss-Newton approximation for each component.
The overall loss function is exactly the same, up to a constant off-
set, as for the Sum-Mixture and Max-Sum-Mixture approaches.
However, the proposed Hessian derivation does not depend on
defining a Gauss-Newton error.

The proposed Hessian-Sum-Mixture Hessian approximation
is derived by setting the second derivatives of the component
errors to zero, and using the chain rule to take into account the
LogSumExp nonlinearity and derive the cost Hessian.

Formally, by writing the negative LogSumExp nonlinearity
as

ρ(f1, . . . , fnk
) = − log

nk∑
k=1

αk exp(−fk), (22)

and setting the fk components to the quadratic forms fk(x) =
1
2ek(x)

Tek(x), the negative Gaussian mixture log-likelihood
may be rewritten as − log p(x) = J(x) + c with

J(x) = ρ(f1(e1(x)), . . . , fk(ek(x)), . . . fnk
(enk

(x))). (23)

Using the Gauss-Newton Hessian approximation for the mixture
components yields

∂2fk(x)

∂x∂x� ≈ ∂ek
∂xT

∂ek
∂x

. (24)
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Applying the chain rule to (23) and using the approximation (24)
yields the factor Jacobian as

∂J(x)

∂x
=

nk∑
k=1

∂ρ

∂fk

∂fk
∂x

, (25)

and the Hessian as

∂2J(x)

∂x∂x� =

nk∑
k=1

⎛
⎝ ∂ρ

∂fk

∂2fk
∂x∂x� +

∂fk
∂xT

nk∑
j=1

∂2ρ

∂fjfk

∂fj
∂x

⎞
⎠ .

(26)

The partial derivatives of ρ are given by

∂ρ

∂fk
=

αk exp(−fk)∑nk

i=1 αi exp(−fi)
(27)

∂2ρ

∂fj∂fk
=

−δjk(αk exp(−fk))
∑nk

i=1 αi exp(−fi)

(
∑nk

i=1 αi exp(−fi))
2

+
αkαj exp(−fk) exp(−fj)

(
∑nk

i=1 αi exp(−fi))
2 , (28)

where δjk is the Kronecker delta and the Jacobian of fk(x) =
1
2ek(x)

Tek(x) is given by

∂fk(x)

∂x
= ek(x)

T ∂ek(x)

∂x
. (29)

Using only the first of the terms in the summand of (26)
guarantees a positive definite Hessian approximation since ∂ρ

∂fk
is guaranteed to be positive. The second term has no such
guarantee. The final proposed Hessian approximation is

∂2J(x)

∂x∂x� ≈ HHSM =

nk∑
k=1

∂ρ

∂fk

∂2fk
∂x∂x� , (30)

where ∂2fk
∂x∂x� is approximated using (24). Examining (27) allows

a somewhat intuitive interpretation of (30). The ∂ρ
∂fk

term is
the relative strength of each component at the evaluation point,
while ∂2fk

∂x∂x� is the Hessian of that component. The Hessian
approximation HHSM in (30) corresponding to each summand
is substituted directly into Newton’s method (1), instead of the
Gauss-Newton approximation in (5).

The key difference with respect to Max-Sum-Mixture is that
the dominant and non-dominant components are all treated
in the same manner. In the Max-Sum-Mixture the dominant
component has a full-rank Hessian contribution, while the non-
dominant components have a rank one Hessian contribution
that is inaccurate as detailed in Section IV. In situations where
the components overlap significantly, the Hessian is thus more
accurate in the proposed method.

VI. NONLINEAR LEAST SQUARES COMPATIBILITY

Most NLS solvers do not support a separate Hessian definition
such that the user may only specify an error and error Jacobian,
which then are input to the GN approximation (5). This may be
circumvented by engineering an “error” and “error Jacobian”
that result in the same descent direction as using Newton’s
method (1) with the HSM Hessian (30), while maintaining

a similar cost function value to the Sum-Mixture (15). First,
defining the following quantities

eTsolver,1 =
[√

∂ρ
∂f1

eT1 . . .
√

∂ρ
∂fK

eTK

]
, (31)

JT
solver,1 =

[√
∂ρ
∂f1

∂e1

∂x� . . .
√

∂ρ
∂fK

∂eK

∂x�

]
, (32)

and substituting into the GN Hessian approximation (5) results
in exactly the Hessian-Sum-Mixture Hessian (26) as well as
the loss Jacobian (25). However, the resulting cost function
‖esolver,1‖22 is not of the same form as (10), which can cause
issues with methods that use the cost function to guide the
optimization such as Levenberg-Marquardt (LM) [18]. To rectify
this, an additional error term is required to make the loss into
the same form as (10). The proposed error and Jacobian to be
input into the solver are thus

eTsolver =
[
eTsolver,1

√
2(γHSM +ΔJ)

]
, (33)

JT
solver =

[
JT

solver, 1 0
]
, (34)

where ΔJ is the difference between the desired loss JGMM (10)
and the squared norm of esolver,1,

ΔJ = JGMM − 1

2
‖esolver,1‖22 , (35)

and γHSM is a normalization constant that ensures positivity of
the square root in (33). The evaluated cost 1

2‖esolver‖22 is thus
1
2‖esolver‖22 = JGMM + γHSM. Note that since Jsolver is not the
true Jacobian of the error esolver, caution must be taken if using
automatic differentiation. The normalization constant γHSM is
taken to be the lower bound on ΔJ to ensure positivity of the
square root argument. By taking the logarithm and exponent
of the second term in (35), and using the properties of expo-
nents, (35) becomes

ΔJ = − log

nk∑
k=1

(αk exp (Sk)) , (36)

Sk =

nk∑
j=1

αj exp (−fj)∑nk

i=1 αi exp (−fi)
(fj − fk) , (37)

with fk = 1
2e

T
kek. A sequence of algebraic manipulations

and using the fact that t exp(−t) ≤ exp(−1) yields Sk ≤
1
αk

∑nk

j=1 αj , and thus

ΔJ ≥ − log

nk∑
k=1

⎛
⎝αk exp

⎛
⎝ 1

αk

nk∑
j=1

αj

⎞
⎠
⎞
⎠ . (38)

The negative of the lower bound (38) is used as γHSM.

VII. SIMULATION AND EXPERIMENTS

To show the benefits of the proposed approach, the perfor-
mance of the Max-Mixture (MM), Max-Sum-Mixture (MSM),
Sum-Mixture (SM), the Hessian Sum-Mixture (HSM), are all
evaluated on two simulated experiments and one real dataset.
A benefit of HSM is in treating all of the components in the
same way, unlike MM or MSM that privilege the dominant
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component. The simulated examples thus focus on cases where
components overlap. The considered simulation examples are
similar to the ones provided in [13], and the real-world exper-
iment is a SLAM problem with unknown data associations. In
some of the tested examples, particularly the 2D toy example
case, the Sum-Mixture approach fails when using standard
Gauss-Newton due to a rank-deficient Hessian. To provide a fair
comparison, Levenberg-Marquardt [18] (LM) is used instead of
Gauss-Newton for all approaches. LM adds a multiple of the
identity to the approximate Hessian, written as HLM = H+ λI,
where λ is a damping constant for the LM method, H is
the original Hessian approximation given by (5) for the Max-
Mixture, Sum-Mixture, and Max-Sum-Mixture, and by (30)
for the Hessian Sum Mixture approach. This ensures that the
Hessian approximation is always full rank. The LM damping
constant λ is set as described in [18].

The metrics used to evaluate the quality of the obtained solu-
tion are root-mean-squared error (RMSE), defined as RMSE =√

1
N

∑N
i=1 ‖x̂i 
 xi‖22, where x̂i and xi are, respectively, the

estimated and ground truth states at timestep i. The 
 opera-
tor represents a generalized “subtraction” operator, required as
some examples considered involve states defined on Lie groups.
Following the definitions in [21], a left perturbation is used for
all Lie group operations in this letter. Additionally, for states that
involve rotations, the difference between the states is split into
a rotational and translational component, yielding a rotational
RMSE (deg) and a translational RMSE (m).

Consistency, the ability of the estimator to characterize its
error uncertainty, is measured using average normalized es-
timation error squared (ANEES) [22]. A perfectly consistent
estimator has ANEES equal to one. The main drawback of
this metric is that it characterizes the posterior state belief as
Gaussian, which is never completely true in practice.

Lastly, the average number of iterations and runtime are
used to characterize how quickly the estimator converges to
the solution. A smaller number of iterations indicates better
descent directions in (1), which is expected if a better Hessian
approximation is used. The solver exits once the step size of the
LM algorithm is below 1× 10−8 or a cap of 200 iterations is
reached.

A. Toy Example

The first simulated example consists of optimizing a problem
with a Gaussian mixture model error term of the form

J(x) = − log

nk∑
k=1

wkN (x; x̌k,Rk) . (39)

The toy example experiments in this section use four mixture
components, such that nk = 4. To quantify the performance of
all algorithms considered, Monte-Carlo trials are run, where in
each trial, random mixture parameters are generated and run
for many different initial conditions. Both 1D and 2D examples
are considered, where in the 1D case, the design variable is
a scalar, and in the 2D case, x ∈ R

2. In all trials, the first
mixture component is chosen with weight w1 ∼ U(0.2, 0.8),
where U(a, b) denotes the uniform distribution over the interval

TABLE I
RESULTS OF THE TOY EXAMPLE MONTE CARLO EXPERIMENT

[a, b]. The weights for the other mixture components component
are chosen as wk = (1− w1)/(nk − 1). The mean for the first
mixture component is set to x̌1 = 0, while each component
of the mean of the other mixture components is chosen as
x̌i
2 ∼ U(−2, 2). The covariance for the first component is set

to R1 = σ2
11, where σ2

1 ∼ U(0.4, 1). The second component
covariance is set to a multiple of the first component such that
R2 = mR1, where m ∼ U(4, 10). For each generated set of
mixture parameters, the optimization is run from 100 different
initial points, chosen uniformly on a grid on [−4, 4] for each
axis in the problem dimension. Additionally, 1000 different
mixture parameters are generated, resulting in a total of 100,
000 Monte-Carlo trials for both the 1D example and 2D example.
The ground truth is determined by sampling on a grid combined
with local optimization to find the global optimum. The result is
marked as successful if it converges to the ground truth within
a given threshold, set to 0.01 meters for all experiments. The
results for both the 1D and 2D Monte-Carlo experiments are
shown in Table I. In all tables, the proposed method is denoted
by †. The posterior in this case is extremely non-Gaussian, thus
the ANEES is not reported. All methods achieve similar error
values, with Sum-Mixture presenting a small improvement over
the other methods. Note however that this is due to its interaction
with LM, since for the 2D case particularly, the Gauss-Newton
version of Sum-Mixture results in a non-invertible Hessian
approximation and the method does not work. Nevertheless, the
HSM approach still achieves a lower number of iterations than
SM or MSM. The Max-Mixture approach achieves the fewest
iterations but has a very low success rate.

B. Point-Set Registration

The point-set registration example follows the structure of
the example in [13], which itself builds on the formulation
of [15]. Given an uncertain source set of points M = {mi}Mi=1,
as well as an uncertain reference set of points T = {pj}Fj=1

with mi,pj ∈ R
N , the point-set registration task seeks to find

the rigid-body transformationT�
ts ∈ SE(N) that best alignsM

to T , where N is either 2 or 3. The transformation is found by
forming point-to-point residuals, eij ,

eij(pj ,mi,Cts, r
st
t ) = pj −Ctsmi − rstt , (40)

whereCts ∈ SO(N) and rstt ∈ R
N are the rotation and transla-

tion components of Tts, respectively. These errors are assumed
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TABLE II
RESULTS OF THE POINT-SET REGISTRATION EXPERIMENT

Gaussian eij ∼ N (eij ; 0,Rij) with covariance

Rij = CtsΣmCT
ts +Σf , (41)

whereΣm,Σf are the noise covariances on point measurements
of points inM and T , respectively. Similarly to [13], to incorpo-
rate data association ambiguity, the likelihood of a measurement
mi is given by the Gaussian mixture

p(mi|Cts, r
st
t , T )=

M∑
j=1

wjN
(
eij(pj ,mi,Cts, r

st
t );0,Rij

)
,

(42)

with uniform weights wj =
1
M . 100 different landmark con-

figurations are generated, with 100 different noisy point-cloud
pairs generated for each. The experiments are run for a planar
2D case where N = 2, and a 3D case where N = 3. For the
2D (3D) case, each landmark configuration is simulated by first
generating 15 (20) landmarks where each position component
is generated according to U ∼ (−5, 5), followed by duplicating
30% of them 4 times in a Gaussian with 0.11 covariance around
the original. 100 measurement pairs are then generated for
each landmark. The uncorrupted measurements are generated
using the ground truth transformation Tts. The groundtruth
transformation itself is randomly sampled as Tts = exp(ξ∧ts),
where (·)∧ : Rm → g, with m = 3 for SE(2) and m = 6 for
SE(3), and exp(·) : g → G is the corresponding exponential
map for SE(2) or SE(3). The Lie group and its corresponding
Lie algebra are denoted G and g respectively. In all presented
experiments, ξTts = [ξφ

T

ξrT ] with ξφ ∼ U(− 15
180 ,

15
180 ), and

ξr ∼ U(−0.5, 0.5). The source and target point covariances
Σm,Σf are each generated randomly asΣ = CDCT, whereD
is a diagonal matrix with entries generated from U(0.1, 0.6) and
C ∈ SO(N) is a random direction-cosine-matrix generated as
C = exp(ξ∧). Each entry in ξ is generated as ξi ∼ U(−π, π),
and the (·)∧ and exp(·) operators are overloaded for SO(N).
Since the state is now defined on a Lie group, the Jacobian
and Hessian of the loss with respect to the state are now re-
placed with their Lie group counterparts [21]. The results are
presented in Table II. In this case, the proposed HSM approach
slightly improves ANEES. This is expected since the Hessian
approximation influences the resulting Laplace approximation
and uncertainty characterization. The RMSE is similar for all
approaches, with the exception of Max-Mixture, which has a
higher RMSE, although it converges the fastest.

C. Lost in the Woods Dataset

The “Lost in the Woods” dataset [16] consists of a wheeled
robot navigating a forest of plastic tubes, which are treated
as landmarks. The robot receives wheel odometry measure-
ments providing forward velocity and angular velocity mea-
surements. The robot is equipped with a laser rangefinder
that provides range-bearing measurements to the landmarks.
The task is to estimate the robot poses, T = {Trob

1 , . . . ,Trob
K },

with Trob
i ∈ SE(2), i = 1, . . . ,K, and the landmark positions

L = {�1, . . . , �n�
}, �i ∈ R

2, i = 1, . . . , n�, given the odometry
and range-bearing measurements. The process model consists
of nonholonomic vehicle kinematics with the wheel odometry
forward and angular velocity inputs detailed in [23]. The range-
bearing measurements of landmark j observed from pose k are
in the form yjk = g(Trob

k , �j) + vjk, where vjk ∼ N (0,Rjk)
and g(·, ·) is the range-bearing measurement model, also de-
tailed in [23]. While the dataset provides the data-association
variables (i.e., which landmark each measurement corresponds
to), to evaluate the performance of the algorithms, the challeng-
ing example of unknown data associations is considered. When
the data associations are unknown, a multimodal measurement
likelihood may be used, as in [6], where each measurement could
have been produced from any landmark in L, such that

p(yk|Trob
k ,L) =

n�∑
j=1

wiN
(
yk − g(Trob

k , �j);0,Rjk

)
. (43)

The optimization problem to be solved then consists of process
model residuals corresponding to the nonholonomic vehicle
dynamics, as well as multimodal range-bearing error terms of
the form (43) for each measurement. To simplify the problem, it
is assumed that the groundtruth number of landmarks are known,
so that the number of components in each mixture (43) is known
a priori. Additionally, it is assumed that an initial guess for each
landmark position is available. This is similar to the setup of
the “oracle baseline” described in [24]. The dataset provides
odometry and landmark measurements at 10 Hz. To reduce the
problem size, the landmark measurements are subsampled to
1 Hz.

To provide an initial guess of the robot states and the land-
mark states, robot poses are initialized through dead-reckoning
the wheel odometry measurements, while the landmarks are
initialized by inverting the measurement model for the first
measurement of each landmark. Note that the initialization of the
landmark positions utilizes the data association labels, but the
actual optimization solves for the associations implicitly using
the multimodal likelihoods for each measurement.

The dataset of length 1200 seconds is split into subsequences
of length Tsubseq seconds each, such that there is no overlap
between subsequences. The performance metrics computed for
each subsequence to each subsequence are averaged to provide
mean metrics. For each subsequence length, two scenarios are
considered that correspond to different limits rmax on the range
of the range-bearing measurements used.

For each subsequence length and maximum range radius,
the average RMSE and the average number of iterations are
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TABLE III
AVERAGE RMSE (M) ON THE LOST IN THE WOODS SUBSEQUENCES

TABLE IV
AVERAGE ITERATIONS ON THE LOST IN THE WOODS SUBSEQUENCES

TABLE V
AVERAGE TIME ON THE LOST IN THE WOODS SUBSEQUENCES

summarized in Tables III and IV, respectively. With the excep-
tion of Sum-Mixture that fails due to the inacurate Hessian,
performance is similar in this experiment for all methods in terms
of RMSE and iteration count. This is explained by landmarks
being far to each other relative to the range-bearing sensor noise
characteristics. The less the components overlap, the smaller
performance improvement can be expected from HSM relative
to previous methods as stated in Section I. There is a slight im-
provement for runtime for HSM compared to MSM in Table V.
This difference must be interpreted with caution. Although rea-
sonable efforts were made to optimize all of the approaches, the
Python implementation may still not be representative of op-
timized real-time systems. Nevertheless, both methods require
the computation of ∂ρ

∂fk
, ek,

∂ek

∂x for each component to compute
error Jacobians at each iteration. Thus, it is recommended to
consider the iteration count as an implementation-independent
proxy for runtime.

VIII. CONCLUSION

This letter proposes a novel Hessian approximation for GMMs
that is compatible with NLS solvers. Speed and consistency
improvements are shown in simulation and similar performance
to state of the art is demonstrated in experiment. While aimed
at improving convergence, the proposed method remains a local
optimization method, requiring a good enough initial guess for
proper operation. Future work will consider global convergence
properties of the solution.
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