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Robot Localization
I Where am I?

I Given: Noisy sensor measurements yk.

I Want: Uncertain robot state at given timestep xk.

1Image taken from https://www.hiig.de/en/robots-be-like-buddha-why-we-think-wall-e-and-bb8-are-cute-and-fortune-teller-robots-are-creepy/
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Problem Structure
I Hidden Markov Model.

y0 y1 y2

x0 x1 x2

I Conditional measurement independence: Each measurement yk is conditionally independent
given the state it depends on,

p(yk|x1:k, y1:k) = p(yk|xk). (1)

I Markov assumption: Each state is conditionally independent of previous measurements given
the previous hidden state.

p(xk|x1:k−1, y1:k−1) = p(xk|xk−1). (2)
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Non-Exhaustive Taxonomy of Estimation Methods

Sliding Window
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Particle Smoother
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Normalizing Flow

iSAM

x0 · · · xk · · · xN

x0 · · · xk · · · xN

Nested Sampling
on Factor Graphs
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Bayes Filter
I Seek marginal distribution of xk, p(xk|y1:k).

I Bayes rule for general random variables x and y

p(x|y) =
1
η

p(y|x)p(x). (3)

I For the filtering case

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k−1). (4)

I Reverse marginalization gives Chapman-Kolmogorov equation

p(xk|y1:k−1) =

∫
p(xk, xk−1|y1:k−1)dxk−1 (5)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (6)
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Bayes Filter
I The marginal p(xk|y1:k) is then

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k) (7)

=
1
η

p(yk|xk)

︸ ︷︷ ︸
Correction

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

︸ ︷︷ ︸
Prediction

(8)

I The prediction integral is intractable in general, as is the normalization constant.

I Choice of how to parametrize state belief.

I Parametric: Gaussian, multimodal.

I Non-parametric: Particles.
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Non-Gaussian Belief
I Gaussian filter, nonlinear-least-squares optimization→ Gaussian belief.

I Particle filtering→ non-Gaussian beliefs about the state estimate.

I Non-Gaussian sensor noise

I Range-only localization

I Strongly nonlinear models, ambiguous data associations, loop closures
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Particle Representations of Probability Distribution Functions (PDFs)
I What can we do with a PDF?

E[f(x)] =

∫
f(x)p(x)dx, (9)

Compute expectations!

I Examples:

f(x) = x→ E[x]

f(x) = (x− E[x])(x− E[x])T → Cov[x]

f(x) = I(x ∈ D)→ P(x ∈ D),

where D is a domain and I(x ∈ D) is the indicator function.
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Particle Representations of Probability Distribution Functions (PDFs)
I Numerical approximation ∫

f(x)p(x)dx ≈
N∑

i=1

wif(xi) (10)

=

∫
f(x)

N∑
i=1

wiδ(x− xi)dx.

(11)

I δ(x− xi) is the Dirac delta, which has the sifting property∫
f(x)δ(x− xi)dx = f(xi). (12)

I PDF expressed as

p(x) ≈
N∑

i=1

wiδ(x− xi),

N∑
i=1

wi = 1. (13)
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General Sampling Methods: Importance Sampling
I If able to directly sample p(x),∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (14)

I Typically impossible.

I Typically only know nominator,

p(x) =
1
η

p̃(x). (15)

A solution: proposal distribution q(x),

E[f(x)] =
1
η

∫
f(x)p̃(x)dx (16)

=
1
η

∫
f(x)

p̃(x)

q(x)
q(x)dx

(17)

≈ 1
η

1
N

∑
f(xi)

p̃(xi)

q(xi)
, xi ∼ q(x).

(18)
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Importance Sampling Normalization Constant
I Evaluating η

p(x) =
1
η

p̃(x). (19)

I η =
∫

p̃(x)dx→ Importance sampling approximation

η =

∫
p̃(x)dx =

∫
p̃(x)

q(x)
q(x)dx =

1
N

N∑
i=1

p̃(xi)

q(x)
, xi ∼ q(x). (20)

I Unnormalized weights w̃i = p̃(xi)
q(xi)

, samples xi ∼ q(x)

E[f(x)] =

N∑
i=1

w̃i∑N
j=1 w̃j

f(xi). (21)
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Approximating a Probability Density Function with Importance
Sampling
I The importance sampling approximation to p(x) given the unnormalized distribution p̃(x), and

a proposal distribution q(x), is thus given by

p(x) ≈
N∑

i=1

wiδ(x− xi), xi ∼ q(x), (22)

with the weights wi given by

wi =
p̃(xi)/q(xi)∑N
j=1 p̃(xj)/q(xj)

. (23)
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Importance Sampling Illustration
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Importance Sampling Illustration
I Single measurement.

I Uniform proposal distribution.
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General Sampling Methods: Markov Chain Monte Carlo
I Given Markov chain with transition probability

T
(

x(m+1), x(m)
)

= p
(

x(m+1)|x(m)
)

(24)

I A distribution p∗(x) invariant w.r.t. given Markov chain if each step leaves it unchanged

p(x(m)) = p∗(x(m))⇒ p(x(m+1)) = p∗(x(m+1)). (25)

Formally,

p∗(x) =

∫
T(x, x′)p∗(x′)dx′. (26)

I Markov chain is called ergodic if p(x(m)) converges to p∗(x).

I Different MCMC algorithms design different Markov chains.
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Metropolis Algorithm
I Start with transition proposal distribution q(x(k+1)|(x(k)))

I Symmetric

q(x(k+1)|(x(k))) = q(x(k)|(x(k+1))) (27)

Example: Gaussian around x(k).

I At each iteration, given current sample x(k)

1. Generate candidate sample

x(k+1)
cand ∼ q(x(k+1)|(x(k))). (28)

2. Accept with probability

P(accept|x(k+1)
cand , x(k)) = min

(
1,

p̃(xk+1
cand)

p̃(xk)

)
. (29)

I Animation!
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Sequential Monte Carlo
I Recall Bayes filter,

p(xk|y1:k−1) =
1
η

p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (30)

I The distribution of the state at timestep k − 1, p(xk−1|y1:k−1), is represented by set of particles,

p(xk−1|y1:k−1) =

N∑
i=1

wi,k−1δ(x− xi,k−1). (31)

I Thus, (30) becomes

p(xk|y1:k) =
1
η

p(yk|xk)

∫
p(xk|xk−1)

N∑
i=1

wi,k−1δ(x− xi,k−1)dxk−1. (32)
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Sequential Monte Carlo
I The sum may be taken outside of the integral such that

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1

∫
p(xk|xk−1)δ(x− xi,k−1)dxk−1 (33)

=
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (34)

I The marginal posterior (34) is only a function of xk.

Can use any Monte Carlo sampling method!
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Integration Nuance
I Filtering distribution given by

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (35)

I Expectation of an arbitrary f(x) is∫
f(xk)p(xk|y1:k)dxk =

1
η

∫
f(xk)p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1)dxk (36)

=
1
η

N∑
i=1

wi,k−1

∫
f(xk)p(yk|xk)p(xk|xi,k−1)dxk.

(37)

I By using (35) in an arbitrary Monte Carlo solver, we develop a set of particles that
approximate the integral in (36).

I By using the N integrands in (37) in an arbitrary Monte Carlo solver, we develop a set of
particles that approximate the sum of the integrals in (37).
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Sequential Monte Carlo with Importance Sampling
I Using importance sampling on (37) with proposal distribution q(xk|xi,k−1) gives

p(xk|y1:k) ≈
N∑

i=1

wi,k−1
p(yk|xk)p(xk|xi,k−1)

q(xk|xi,k−1)
δ(x− xi,k) xi,k ∼ q(xk|xi,k−1). (38)

I The sequential update is then

xi,k ∼ q(xk|xi,k−1), (39)

wi,k ← wi,k−1
p(yk|xi,k)p(xi,k|xi,k−1)

q(xi,k|xi,k−1)
. (40)

I This is called Sequential Importance Sampling.

I Setting q(xk|xi,k−1) = p(xk|xi,k−1) is the bootstrap particle filter.

I Running an MCMC method on each integral of (38), after resampling, corresponds to the
resample-move algorithm. Only the last sample in the chain is kept.
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Demo - A Simple Example
I Vector state xk ∈ R2.

I Single integrator process model,

xk+1 = xk + uk + vk, vk ∼ N (0,Qk). (41)

I Range measurement to anchor in the center of the scene,

yk = ‖xk‖2
2 + wk, wk ∼ N (0,R). (42)
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Resampling
I The problem of all but a few weights going to zero is called the sample degeneracy problem.

I Addressed by resampling in more probable regions. Given

p(x) ≈
N∑

i=1

wiδ(x− xi), (43)

draw a new set xj from the discrete distribution

P(xj) = wj, xj ∈ {x1, . . . , xi, . . . xN}. (44)

I Concentrates particles in more likely regions.

I Can cause sample impoverishment where particles lose diversity.

I Adaptive resampling - resample only when needed. For exaple, use effective number of
particles as a threshold,

neff ≈
1∑N

i=1 w(i)
k

2 . (45)
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Rao-Blackwellization

Partition state into non-Gaussian part u and conditionally Gaussian part x.
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Rao-Blackwellization
I Models of form

p(xk|xk−1,uk−1) = N (xk; f(xk−1,uk−1)),Qk−1(uk−1)), (46)
p(yk|xk,uk) = N (yk; g(xk,uk),Rk(uk)), (47)
p(uk|uk−1) ∼ Any distribution. (48)

where uk is non-Gaussian part of the state.

I State belief

p(xk,uk|y1:k) =

N∑
i=1

w(i)
k δ
(

uk − u(i)
k

)
N
(

xk; x̂(i)
k , P̂(i)

k

)
. (49)

I State part x is conditionally Gaussian given u,

p(xk|uk, y1:k) =
N∑

j=1

I(uj = uk)N (xk|x(j)
k ,P(j)

k ). (50)

where I(∗) is the indicator function that is equal to one if the input condition is fulfilled, and
zero if not.
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Rao-Blackwellization
I The Bayes filter takes the form,

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (51)

=
1
η

p(xk|uk, yk−1:k)p(yk|uk, yk−1)p(uk|yk−1) (52)

I The predicted distribution of u is given by the Chapman-Kolmogorov equation,

p(uk|yk−1) =

∫
p(uk|uk−1)p(uk−1|yk−1)duk−1 (53)

=

∫
p(uk|uk−1)

N∑
i=1

wi
k−1δ(uk−1 − u(i)

k−1)duk−1 (54)

=

N∑
i=1

wi
k−1p(uk|u(i)

k−1). (55)
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Rao-Blackwellization - Prediction step for non-Gaussian state
I Importance sampling. Define q(uk|ui

k−1) and sample a u(i)
k with corresponding predicted weight

w̌(i)
k = w(i−1)

k

p(u(i)
k |u

(i)
k−1)

q(u(i−1)
k |u(i)

k−1)
. (56)

I The predicted distribution on uk is thus

p(uk|yk−1) =
N∑

i=1

w̌(i)
k δ(uk − u(i)

k ). (57)
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Rao-Blackwellization - Correction step for non-Gaussian state
I The correction consists of updating the weights using the marginal likelihood p(yk|uk, yk−1),

which is obtained by

p(yk|uk, yk−1) =

∫
p(yk, xk|uk, yk−1)dxk (58)

=

∫
p(yk|xk,uk)p(xk|uk, yk−1)dxk, (59)

where p(xk|uk, yk−1) is given by

p(xk|uk, yk−1) =

N∑
i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k ). (60)

I The likelihood (59) becomes

p(yk|uk, yk−1) =

N∑
i=1

w(i)
k−1I(ui = uk)

∫
p(yk|xk,uk)N

(
xk; x̌(i)

k , P̌(i)
k

)
dxk, (61)

where each integral obtained as the marginal measurement mean and covariance of the
Gaussian filter update.
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Rao-Blackwellization - Updated Belief on non-Gaussian State
The likelihood (61) is thus combined with (57) to give

p(uk|yk−1:k) =

N∑
i=1

w(i)
k δ(uk − u(i)

k ), (62)

with

u(i)
k ∼ q(u(i−1)

k |u(i)
k−1) (63)

w(i)
k = w(i−1)

k

p(u(i)
k |u

(i)
k−1)

q(u(i−1)
k |u(i)

k−1)︸ ︷︷ ︸
w̌(i)

k

∫
p(yk|xk,uk)N

(
xk; x̌(i)

k , P̌(i)
k

)
dxk. (64)
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Rao-Blackwellization - Updating Conditionally Gaussian State
I The Bayes filter (51) becomes

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (65)

=
1
η

p(yk|xk,uk)p(xk|uk, yk−1)

N∑
i=1

w(i)
k δ(uk − u(i)

k )

(66)

=
1
η

p(yk|xk,uk)
N∑

i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k )
N∑

i=1

w(i)
k δ(uk − u(i)

k ).

(67)

I Which simplifies to

p(xk,uk|yk−1:k) =
1
η

N∑
i=1

p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k )w(i)
k δ(uk − u(i)

k ) (68)

=
1
η

N∑
i=1

w(i)
k δ(uk − u(i)

k ) p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k )︸ ︷︷ ︸
Predict/Correct for each particle’s x

,

(69)

where the non-Gaussian state update for w(i)
k ,u(i)

k is given by (64).
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