
Monte Carlo Methods in Filtering

Vassili Korotkine

McGill University, Department of Mechanical Engineering

May 21, 2024

1/30

Robot Localization
I Where am I?

I Given: Noisy sensor measurements yk.

I Want: Uncertain robot state at given timestep xk.

1Image taken from https://www.hiig.de/en/robots-be-like-buddha-why-we-think-wall-e-and-bb8-are-cute-and-fortune-teller-robots-are-creepy/

2/30

https://www.hiig.de/en/robots-be-like-buddha-why-we-think-wall-e-and-bb8-are-cute-and-fortune-teller-robots-are-creepy/

Robot Localization
I Where am I?

I Given: Noisy sensor measurements yk.

I Want: Uncertain robot state at given timestep xk.

1Image taken from https://www.hiig.de/en/robots-be-like-buddha-why-we-think-wall-e-and-bb8-are-cute-and-fortune-teller-robots-are-creepy/

2/30

https://www.hiig.de/en/robots-be-like-buddha-why-we-think-wall-e-and-bb8-are-cute-and-fortune-teller-robots-are-creepy/

Robot Localization
I Where am I?

I Given: Noisy sensor measurements yk.

I Want: Uncertain robot state at given timestep xk.

1Image taken from https://www.hiig.de/en/robots-be-like-buddha-why-we-think-wall-e-and-bb8-are-cute-and-fortune-teller-robots-are-creepy/

2/30

https://www.hiig.de/en/robots-be-like-buddha-why-we-think-wall-e-and-bb8-are-cute-and-fortune-teller-robots-are-creepy/

Problem Structure
I Hidden Markov Model.

y0 y1 y2

x0 x1 x2

I Conditional measurement independence: Each measurement yk is conditionally independent
given the state it depends on,

p(yk|x1:k, y1:k) = p(yk|xk). (1)

I Markov assumption: Each state is conditionally independent of previous measurements given
the previous hidden state.

p(xk|x1:k−1, y1:k−1) = p(xk|xk−1). (2)

3/30

Problem Structure
I Hidden Markov Model.

y0 y1 y2

x0 x1 x2

I Conditional measurement independence: Each measurement yk is conditionally independent
given the state it depends on,

p(yk|x1:k, y1:k) = p(yk|xk). (1)

I Markov assumption: Each state is conditionally independent of previous measurements given
the previous hidden state.

p(xk|x1:k−1, y1:k−1) = p(xk|xk−1). (2)

3/30

Problem Structure
I Hidden Markov Model.

y0 y1 y2

x0 x1 x2

I Conditional measurement independence: Each measurement yk is conditionally independent
given the state it depends on,

p(yk|x1:k, y1:k) = p(yk|xk). (1)

I Markov assumption: Each state is conditionally independent of previous measurements given
the previous hidden state.

p(xk|x1:k−1, y1:k−1) = p(xk|xk−1). (2)

3/30

Non-Exhaustive Taxonomy of Estimation Methods

Sliding Window

x0 x1 · · · xk−2 xk+2 · · · xN

Batch

x0 · · · xk · · · xN

Parametric

RTS Smoother

Gaussian Filter Extended
(linearization)

Sigma-point
(numerical integration)

F
il
te
ri
n
g
p(
x
k
|y

1
:k
)

Non-Parametric

Particle Filter

p0 · · ·pk · · ·pK

S
m
oo

th
ed

p(
x
k
|y

1
:K
)

Particle Smoother

p0 · · ·pk · · ·pK

{
Normalizing Flow

iSAM

x0 · · · xk · · · xN

x0 · · · xk · · · xN

Nested Sampling
on Factor Graphs

4/30

Bayes Filter
I Seek marginal distribution of xk, p(xk|y1:k).

I Bayes rule for general random variables x and y

p(x|y) =
1
η

p(y|x)p(x). (3)

I For the filtering case

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k−1). (4)

I Reverse marginalization gives Chapman-Kolmogorov equation

p(xk|y1:k−1) =

∫
p(xk, xk−1|y1:k−1)dxk−1 (5)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (6)

5/30

Bayes Filter
I Seek marginal distribution of xk, p(xk|y1:k).

I Bayes rule for general random variables x and y

p(x|y) =
1
η

p(y|x)p(x). (3)

I For the filtering case

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k−1). (4)

I Reverse marginalization gives Chapman-Kolmogorov equation

p(xk|y1:k−1) =

∫
p(xk, xk−1|y1:k−1)dxk−1 (5)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (6)

5/30

Bayes Filter
I Seek marginal distribution of xk, p(xk|y1:k).

I Bayes rule for general random variables x and y

p(x|y) =
1
η

p(y|x)p(x). (3)

I For the filtering case

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k−1). (4)

I Reverse marginalization gives Chapman-Kolmogorov equation

p(xk|y1:k−1) =

∫
p(xk, xk−1|y1:k−1)dxk−1 (5)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (6)

5/30

Bayes Filter
I Seek marginal distribution of xk, p(xk|y1:k).

I Bayes rule for general random variables x and y

p(x|y) =
1
η

p(y|x)p(x). (3)

I For the filtering case

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k−1). (4)

I Reverse marginalization gives Chapman-Kolmogorov equation

p(xk|y1:k−1) =

∫
p(xk, xk−1|y1:k−1)dxk−1 (5)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (6)

5/30

Bayes Filter
I The marginal p(xk|y1:k) is then

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k) (7)

=
1
η

p(yk|xk)

︸ ︷︷ ︸
Correction

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

︸ ︷︷ ︸
Prediction

(8)

I The prediction integral is intractable in general, as is the normalization constant.

I Choice of how to parametrize state belief.

I Parametric: Gaussian, multimodal.

I Non-parametric: Particles.

6/30

Bayes Filter
I The marginal p(xk|y1:k) is then

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k) (7)

=
1
η

p(yk|xk)

︸ ︷︷ ︸
Correction

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.︸ ︷︷ ︸

Prediction

(8)

I The prediction integral is intractable in general, as is the normalization constant.

I Choice of how to parametrize state belief.

I Parametric: Gaussian, multimodal.

I Non-parametric: Particles.

6/30

Bayes Filter
I The marginal p(xk|y1:k) is then

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k) (7)

=
1
η

p(yk|xk)︸ ︷︷ ︸
Correction

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.︸ ︷︷ ︸

Prediction

(8)

I The prediction integral is intractable in general, as is the normalization constant.

I Choice of how to parametrize state belief.

I Parametric: Gaussian, multimodal.

I Non-parametric: Particles.

6/30

Bayes Filter
I The marginal p(xk|y1:k) is then

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k) (7)

=
1
η

p(yk|xk)︸ ︷︷ ︸
Correction

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.︸ ︷︷ ︸

Prediction

(8)

I The prediction integral is intractable in general, as is the normalization constant.

I Choice of how to parametrize state belief.

I Parametric: Gaussian, multimodal.

I Non-parametric: Particles.

6/30

Bayes Filter
I The marginal p(xk|y1:k) is then

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k) (7)

=
1
η

p(yk|xk)︸ ︷︷ ︸
Correction

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.︸ ︷︷ ︸

Prediction

(8)

I The prediction integral is intractable in general, as is the normalization constant.

I Choice of how to parametrize state belief.

I Parametric: Gaussian, multimodal.

I Non-parametric: Particles.

6/30

Bayes Filter
I The marginal p(xk|y1:k) is then

p(xk|y1:k) =
1
η

p(yk|xk)p(xk|y1:k) (7)

=
1
η

p(yk|xk)︸ ︷︷ ︸
Correction

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.︸ ︷︷ ︸

Prediction

(8)

I The prediction integral is intractable in general, as is the normalization constant.

I Choice of how to parametrize state belief.

I Parametric: Gaussian, multimodal.

I Non-parametric: Particles.

6/30

Non-Gaussian Belief
I Gaussian filter, nonlinear-least-squares optimization→ Gaussian belief.

I Particle filtering→ non-Gaussian beliefs about the state estimate.

I Non-Gaussian sensor noise

I Range-only localization

I Strongly nonlinear models, ambiguous data associations, loop closures

7/30

Non-Gaussian Belief
I Gaussian filter, nonlinear-least-squares optimization→ Gaussian belief.

I Particle filtering→ non-Gaussian beliefs about the state estimate.

I Non-Gaussian sensor noise

I Range-only localization

I Strongly nonlinear models, ambiguous data associations, loop closures

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.1

0.2

0.3
p(x)

p(y|x)

7/30

Non-Gaussian Belief
I Gaussian filter, nonlinear-least-squares optimization→ Gaussian belief.

I Particle filtering→ non-Gaussian beliefs about the state estimate.

I Non-Gaussian sensor noise

I Range-only localization

I Strongly nonlinear models, ambiguous data associations, loop closures

||r||2

−2 −1 0 1 2
x1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p(
y
|x

)

7/30

Non-Gaussian Belief
I Gaussian filter, nonlinear-least-squares optimization→ Gaussian belief.

I Particle filtering→ non-Gaussian beliefs about the state estimate.

I Non-Gaussian sensor noise

I Range-only localization

I Strongly nonlinear models, ambiguous data associations, loop closures

||r||2

−2 −1 0 1 2
x1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p(
y
|x

)

7/30

Particle Representations of Probability Distribution Functions (PDFs)
I What can we do with a PDF?

E[f(x)] =

∫
f(x)p(x)dx, (9)

Compute expectations!

I Examples:

f(x) = x→ E[x]

f(x) = (x− E[x])(x− E[x])T → Cov[x]

f(x) = I(x ∈ D)→ P(x ∈ D),

where D is a domain and I(x ∈ D) is the indicator function.

8/30

Particle Representations of Probability Distribution Functions (PDFs)
I What can we do with a PDF?

E[f(x)] =

∫
f(x)p(x)dx, (9)

Compute expectations!

I Examples:

f(x) = x→ E[x]

f(x) = (x− E[x])(x− E[x])T → Cov[x]

f(x) = I(x ∈ D)→ P(x ∈ D),

where D is a domain and I(x ∈ D) is the indicator function.

8/30

Particle Representations of Probability Distribution Functions (PDFs)
I What can we do with a PDF?

E[f(x)] =

∫
f(x)p(x)dx, (9)

Compute expectations!

I Examples:

f(x) = x→ E[x]

f(x) = (x− E[x])(x− E[x])T → Cov[x]

f(x) = I(x ∈ D)→ P(x ∈ D),

where D is a domain and I(x ∈ D) is the indicator function.

8/30

Particle Representations of Probability Distribution Functions (PDFs)
I What can we do with a PDF?

E[f(x)] =

∫
f(x)p(x)dx, (9)

Compute expectations!

I Examples:

f(x) = x→ E[x]

f(x) = (x− E[x])(x− E[x])T → Cov[x]

f(x) = I(x ∈ D)→ P(x ∈ D),

where D is a domain and I(x ∈ D) is the indicator function.

8/30

Particle Representations of Probability Distribution Functions (PDFs)
I What can we do with a PDF?

E[f(x)] =

∫
f(x)p(x)dx, (9)

Compute expectations!

I Examples:

f(x) = x→ E[x]

f(x) = (x− E[x])(x− E[x])T → Cov[x]

f(x) = I(x ∈ D)→ P(x ∈ D),

where D is a domain and I(x ∈ D) is the indicator function.

8/30

Particle Representations of Probability Distribution Functions (PDFs)
I Numerical approximation ∫

f(x)p(x)dx ≈
N∑

i=1

wif(xi) (10)

=

∫
f(x)

N∑
i=1

wiδ(x− xi)dx.

(11)

I δ(x− xi) is the Dirac delta, which has the sifting property∫
f(x)δ(x− xi)dx = f(xi). (12)

I PDF expressed as

p(x) ≈
N∑

i=1

wiδ(x− xi),

N∑
i=1

wi = 1. (13)

9/30

Particle Representations of Probability Distribution Functions (PDFs)
I Numerical approximation ∫

f(x)p(x)dx ≈
N∑

i=1

wif(xi) (10)

=

∫
f(x)

N∑
i=1

wiδ(x− xi)dx. (11)

I δ(x− xi) is the Dirac delta, which has the sifting property∫
f(x)δ(x− xi)dx = f(xi). (12)

I PDF expressed as

p(x) ≈
N∑

i=1

wiδ(x− xi),

N∑
i=1

wi = 1. (13)

9/30

Particle Representations of Probability Distribution Functions (PDFs)
I Numerical approximation ∫

f(x)p(x)dx ≈
N∑

i=1

wif(xi) (10)

=

∫
f(x)

N∑
i=1

wiδ(x− xi)dx. (11)

I δ(x− xi) is the Dirac delta, which has the sifting property∫
f(x)δ(x− xi)dx = f(xi). (12)

I PDF expressed as

p(x) ≈
N∑

i=1

wiδ(x− xi),

N∑
i=1

wi = 1. (13)

9/30

Particle Representations of Probability Distribution Functions (PDFs)
I Numerical approximation ∫

f(x)p(x)dx ≈
N∑

i=1

wif(xi) (10)

=

∫
f(x)

N∑
i=1

wiδ(x− xi)dx. (11)

I δ(x− xi) is the Dirac delta, which has the sifting property∫
f(x)δ(x− xi)dx = f(xi). (12)

I PDF expressed as

p(x) ≈
N∑

i=1

wiδ(x− xi),

N∑
i=1

wi = 1. (13)

9/30

General Sampling Methods: Importance Sampling
I If able to directly sample p(x),∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (14)

I Typically impossible.

I Typically only know nominator,

p(x) =
1
η

p̃(x). (15)

A solution: proposal distribution q(x),

E[f(x)] =
1
η

∫
f(x)p̃(x)dx (16)

=
1
η

∫
f(x)

p̃(x)

q(x)
q(x)dx

(17)

≈ 1
η

1
N

∑
f(xi)

p̃(xi)

q(xi)
, xi ∼ q(x).

(18)

10/30

General Sampling Methods: Importance Sampling
I If able to directly sample p(x),∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (14)

I Typically impossible.

I Typically only know nominator,

p(x) =
1
η

p̃(x). (15)

A solution: proposal distribution q(x),

E[f(x)] =
1
η

∫
f(x)p̃(x)dx (16)

=
1
η

∫
f(x)

p̃(x)

q(x)
q(x)dx

(17)

≈ 1
η

1
N

∑
f(xi)

p̃(xi)

q(xi)
, xi ∼ q(x).

(18)

10/30

General Sampling Methods: Importance Sampling
I If able to directly sample p(x),∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (14)

I Typically impossible.

I Typically only know nominator,

p(x) =
1
η

p̃(x). (15)

A solution: proposal distribution q(x),

E[f(x)] =
1
η

∫
f(x)p̃(x)dx (16)

=
1
η

∫
f(x)

p̃(x)

q(x)
q(x)dx

(17)

≈ 1
η

1
N

∑
f(xi)

p̃(xi)

q(xi)
, xi ∼ q(x).

(18)

10/30

General Sampling Methods: Importance Sampling
I If able to directly sample p(x),∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (14)

I Typically impossible.

I Typically only know nominator,

p(x) =
1
η

p̃(x). (15)

A solution: proposal distribution q(x),

E[f(x)] =
1
η

∫
f(x)p̃(x)dx (16)

=
1
η

∫
f(x)

p̃(x)

q(x)
q(x)dx

(17)

≈ 1
η

1
N

∑
f(xi)

p̃(xi)

q(xi)
, xi ∼ q(x).

(18)

10/30

General Sampling Methods: Importance Sampling
I If able to directly sample p(x),∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (14)

I Typically impossible.

I Typically only know nominator,

p(x) =
1
η

p̃(x). (15)

A solution: proposal distribution q(x),

E[f(x)] =
1
η

∫
f(x)p̃(x)dx (16)

=
1
η

∫
f(x)

p̃(x)

q(x)
q(x)dx (17)

≈ 1
η

1
N

∑
f(xi)

p̃(xi)

q(xi)
, xi ∼ q(x).

(18)

10/30

General Sampling Methods: Importance Sampling
I If able to directly sample p(x),∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(xi), xi ∼ p(x). (14)

I Typically impossible.

I Typically only know nominator,

p(x) =
1
η

p̃(x). (15)

A solution: proposal distribution q(x),

E[f(x)] =
1
η

∫
f(x)p̃(x)dx (16)

=
1
η

∫
f(x)

p̃(x)

q(x)
q(x)dx (17)

≈ 1
η

1
N

∑
f(xi)

p̃(xi)

q(xi)
, xi ∼ q(x). (18)

10/30

Importance Sampling Normalization Constant
I Evaluating η

p(x) =
1
η

p̃(x). (19)

I η =
∫

p̃(x)dx→ Importance sampling approximation

η =

∫
p̃(x)dx =

∫
p̃(x)

q(x)
q(x)dx =

1
N

N∑
i=1

p̃(xi)

q(x)
, xi ∼ q(x). (20)

I Unnormalized weights w̃i = p̃(xi)
q(xi)

, samples xi ∼ q(x)

E[f(x)] =

N∑
i=1

w̃i∑N
j=1 w̃j

f(xi). (21)

11/30

Importance Sampling Normalization Constant
I Evaluating η

p(x) =
1
η

p̃(x). (19)

I η =
∫

p̃(x)dx→ Importance sampling approximation

η =

∫
p̃(x)dx =

∫
p̃(x)

q(x)
q(x)dx =

1
N

N∑
i=1

p̃(xi)

q(x)
, xi ∼ q(x). (20)

I Unnormalized weights w̃i = p̃(xi)
q(xi)

, samples xi ∼ q(x)

E[f(x)] =

N∑
i=1

w̃i∑N
j=1 w̃j

f(xi). (21)

11/30

Importance Sampling Normalization Constant
I Evaluating η

p(x) =
1
η

p̃(x). (19)

I η =
∫

p̃(x)dx→ Importance sampling approximation

η =

∫
p̃(x)dx =

∫
p̃(x)

q(x)
q(x)dx =

1
N

N∑
i=1

p̃(xi)

q(x)
, xi ∼ q(x). (20)

I Unnormalized weights w̃i = p̃(xi)
q(xi)

, samples xi ∼ q(x)

E[f(x)] =

N∑
i=1

w̃i∑N
j=1 w̃j

f(xi). (21)

11/30

Approximating a Probability Density Function with Importance
Sampling
I The importance sampling approximation to p(x) given the unnormalized distribution p̃(x), and

a proposal distribution q(x), is thus given by

p(x) ≈
N∑

i=1

wiδ(x− xi), xi ∼ q(x), (22)

with the weights wi given by

wi =
p̃(xi)/q(xi)∑N
j=1 p̃(xj)/q(xj)

. (23)

12/30

Approximating a Probability Density Function with Importance
Sampling
I The importance sampling approximation to p(x) given the unnormalized distribution p̃(x), and

a proposal distribution q(x), is thus given by

p(x) ≈
N∑

i=1

wiδ(x− xi), xi ∼ q(x), (22)

with the weights wi given by

wi =
p̃(xi)/q(xi)∑N
j=1 p̃(xj)/q(xj)

. (23)

12/30

Importance Sampling Illustration

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0.00

0.01

0.02

0.03
p(y|x)p(x)

0.00

0.05

0.10

0.15

Proposal

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.1

0.2

0.3

Importance Sampled 100 Samples

0.000

0.025

0.050

0.075

0.100
Weights

13/30

Importance Sampling Illustration

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0.00

0.01

0.02

0.03
p(y|x)p(x)

0.0

0.1

0.2

0.3

0.4Proposal

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8 Importance Sampled 100 Samples

0.01

0.02

0.03
Weights

13/30

Importance Sampling Illustration
I Single measurement.

I Uniform proposal distribution.

||r||2

−1 0 1
x1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
2

Proposed

−1 0 1
x1

Weighted

0.000

0.002

0.004

0.006

0.008

0.010

W
ei

gh
t

14/30

General Sampling Methods: Markov Chain Monte Carlo
I Given Markov chain with transition probability

T
(

x(m+1), x(m)
)

= p
(

x(m+1)|x(m)
)

(24)

I A distribution p∗(x) invariant w.r.t. given Markov chain if each step leaves it unchanged

p(x(m)) = p∗(x(m))⇒ p(x(m+1)) = p∗(x(m+1)). (25)

Formally,

p∗(x) =

∫
T(x, x′)p∗(x′)dx′. (26)

I Markov chain is called ergodic if p(x(m)) converges to p∗(x).

I Different MCMC algorithms design different Markov chains.

15/30

General Sampling Methods: Markov Chain Monte Carlo
I Given Markov chain with transition probability

T
(

x(m+1), x(m)
)

= p
(

x(m+1)|x(m)
)

(24)

I A distribution p∗(x) invariant w.r.t. given Markov chain if each step leaves it unchanged

p(x(m)) = p∗(x(m))⇒ p(x(m+1)) = p∗(x(m+1)). (25)

Formally,

p∗(x) =

∫
T(x, x′)p∗(x′)dx′. (26)

I Markov chain is called ergodic if p(x(m)) converges to p∗(x).

I Different MCMC algorithms design different Markov chains.

15/30

General Sampling Methods: Markov Chain Monte Carlo
I Given Markov chain with transition probability

T
(

x(m+1), x(m)
)

= p
(

x(m+1)|x(m)
)

(24)

I A distribution p∗(x) invariant w.r.t. given Markov chain if each step leaves it unchanged

p(x(m)) = p∗(x(m))⇒ p(x(m+1)) = p∗(x(m+1)). (25)

Formally,

p∗(x) =

∫
T(x, x′)p∗(x′)dx′. (26)

I Markov chain is called ergodic if p(x(m)) converges to p∗(x).

I Different MCMC algorithms design different Markov chains.

15/30

General Sampling Methods: Markov Chain Monte Carlo
I Given Markov chain with transition probability

T
(

x(m+1), x(m)
)

= p
(

x(m+1)|x(m)
)

(24)

I A distribution p∗(x) invariant w.r.t. given Markov chain if each step leaves it unchanged

p(x(m)) = p∗(x(m))⇒ p(x(m+1)) = p∗(x(m+1)). (25)

Formally,

p∗(x) =

∫
T(x, x′)p∗(x′)dx′. (26)

I Markov chain is called ergodic if p(x(m)) converges to p∗(x).

I Different MCMC algorithms design different Markov chains.

15/30

General Sampling Methods: Markov Chain Monte Carlo
I Given Markov chain with transition probability

T
(

x(m+1), x(m)
)

= p
(

x(m+1)|x(m)
)

(24)

I A distribution p∗(x) invariant w.r.t. given Markov chain if each step leaves it unchanged

p(x(m)) = p∗(x(m))⇒ p(x(m+1)) = p∗(x(m+1)). (25)

Formally,

p∗(x) =

∫
T(x, x′)p∗(x′)dx′. (26)

I Markov chain is called ergodic if p(x(m)) converges to p∗(x).

I Different MCMC algorithms design different Markov chains.

15/30

Metropolis Algorithm
I Start with transition proposal distribution q(x(k+1)|(x(k)))

I Symmetric

q(x(k+1)|(x(k))) = q(x(k)|(x(k+1))) (27)

Example: Gaussian around x(k).

I At each iteration, given current sample x(k)

1. Generate candidate sample

x(k+1)
cand ∼ q(x(k+1)|(x(k))). (28)

2. Accept with probability

P(accept|x(k+1)
cand , x(k)) = min

(
1,

p̃(xk+1
cand)

p̃(xk)

)
. (29)

I Animation!

16/30

Metropolis Algorithm
I Start with transition proposal distribution q(x(k+1)|(x(k)))

I Symmetric

q(x(k+1)|(x(k))) = q(x(k)|(x(k+1))) (27)

Example: Gaussian around x(k).

I At each iteration, given current sample x(k)

1. Generate candidate sample

x(k+1)
cand ∼ q(x(k+1)|(x(k))). (28)

2. Accept with probability

P(accept|x(k+1)
cand , x(k)) = min

(
1,

p̃(xk+1
cand)

p̃(xk)

)
. (29)

I Animation!

16/30

Metropolis Algorithm
I Start with transition proposal distribution q(x(k+1)|(x(k)))

I Symmetric

q(x(k+1)|(x(k))) = q(x(k)|(x(k+1))) (27)

Example: Gaussian around x(k).

I At each iteration, given current sample x(k)

1. Generate candidate sample

x(k+1)
cand ∼ q(x(k+1)|(x(k))). (28)

2. Accept with probability

P(accept|x(k+1)
cand , x(k)) = min

(
1,

p̃(xk+1
cand)

p̃(xk)

)
. (29)

I Animation!

16/30

Metropolis Algorithm
I Start with transition proposal distribution q(x(k+1)|(x(k)))

I Symmetric

q(x(k+1)|(x(k))) = q(x(k)|(x(k+1))) (27)

Example: Gaussian around x(k).

I At each iteration, given current sample x(k)

1. Generate candidate sample

x(k+1)
cand ∼ q(x(k+1)|(x(k))). (28)

2. Accept with probability

P(accept|x(k+1)
cand , x(k)) = min

(
1,

p̃(xk+1
cand)

p̃(xk)

)
. (29)

I Animation!

16/30

Metropolis Algorithm
I Start with transition proposal distribution q(x(k+1)|(x(k)))

I Symmetric

q(x(k+1)|(x(k))) = q(x(k)|(x(k+1))) (27)

Example: Gaussian around x(k).

I At each iteration, given current sample x(k)

1. Generate candidate sample

x(k+1)
cand ∼ q(x(k+1)|(x(k))). (28)

2. Accept with probability

P(accept|x(k+1)
cand , x(k)) = min

(
1,

p̃(xk+1
cand)

p̃(xk)

)
. (29)

I Animation!

16/30

Metropolis Algorithm
I Start with transition proposal distribution q(x(k+1)|(x(k)))

I Symmetric

q(x(k+1)|(x(k))) = q(x(k)|(x(k+1))) (27)

Example: Gaussian around x(k).

I At each iteration, given current sample x(k)

1. Generate candidate sample

x(k+1)
cand ∼ q(x(k+1)|(x(k))). (28)

2. Accept with probability

P(accept|x(k+1)
cand , x(k)) = min

(
1,

p̃(xk+1
cand)

p̃(xk)

)
. (29)

I Animation!
16/30

Sequential Monte Carlo
I Recall Bayes filter,

p(xk|y1:k−1) =
1
η

p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (30)

I The distribution of the state at timestep k − 1, p(xk−1|y1:k−1), is represented by set of particles,

p(xk−1|y1:k−1) =

N∑
i=1

wi,k−1δ(x− xi,k−1). (31)

I Thus, (30) becomes

p(xk|y1:k) =
1
η

p(yk|xk)

∫
p(xk|xk−1)

N∑
i=1

wi,k−1δ(x− xi,k−1)dxk−1. (32)

17/30

Sequential Monte Carlo
I Recall Bayes filter,

p(xk|y1:k−1) =
1
η

p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (30)

I The distribution of the state at timestep k − 1, p(xk−1|y1:k−1), is represented by set of particles,

p(xk−1|y1:k−1) =

N∑
i=1

wi,k−1δ(x− xi,k−1). (31)

I Thus, (30) becomes

p(xk|y1:k) =
1
η

p(yk|xk)

∫
p(xk|xk−1)

N∑
i=1

wi,k−1δ(x− xi,k−1)dxk−1. (32)

17/30

Sequential Monte Carlo
I Recall Bayes filter,

p(xk|y1:k−1) =
1
η

p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (30)

I The distribution of the state at timestep k − 1, p(xk−1|y1:k−1), is represented by set of particles,

p(xk−1|y1:k−1) =

N∑
i=1

wi,k−1δ(x− xi,k−1). (31)

I Thus, (30) becomes

p(xk|y1:k) =
1
η

p(yk|xk)

∫
p(xk|xk−1)

N∑
i=1

wi,k−1δ(x− xi,k−1)dxk−1. (32)

17/30

Sequential Monte Carlo
I The sum may be taken outside of the integral such that

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1

∫
p(xk|xk−1)δ(x− xi,k−1)dxk−1 (33)

=
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (34)

I The marginal posterior (34) is only a function of xk.

Can use any Monte Carlo sampling method!

18/30

Sequential Monte Carlo
I The sum may be taken outside of the integral such that

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1

∫
p(xk|xk−1)δ(x− xi,k−1)dxk−1 (33)

=
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (34)

I The marginal posterior (34) is only a function of xk.

Can use any Monte Carlo sampling method!

18/30

Sequential Monte Carlo
I The sum may be taken outside of the integral such that

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1

∫
p(xk|xk−1)δ(x− xi,k−1)dxk−1 (33)

=
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (34)

I The marginal posterior (34) is only a function of xk.

Can use any Monte Carlo sampling method!

18/30

Integration Nuance
I Filtering distribution given by

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (35)

I Expectation of an arbitrary f(x) is∫
f(xk)p(xk|y1:k)dxk =

1
η

∫
f(xk)p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1)dxk (36)

=
1
η

N∑
i=1

wi,k−1

∫
f(xk)p(yk|xk)p(xk|xi,k−1)dxk.

(37)

I By using (35) in an arbitrary Monte Carlo solver, we develop a set of particles that
approximate the integral in (36).

I By using the N integrands in (37) in an arbitrary Monte Carlo solver, we develop a set of
particles that approximate the sum of the integrals in (37).

19/30

Integration Nuance
I Filtering distribution given by

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (35)

I Expectation of an arbitrary f(x) is∫
f(xk)p(xk|y1:k)dxk =

1
η

∫
f(xk)p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1)dxk (36)

=
1
η

N∑
i=1

wi,k−1

∫
f(xk)p(yk|xk)p(xk|xi,k−1)dxk.

(37)

I By using (35) in an arbitrary Monte Carlo solver, we develop a set of particles that
approximate the integral in (36).

I By using the N integrands in (37) in an arbitrary Monte Carlo solver, we develop a set of
particles that approximate the sum of the integrals in (37).

19/30

Integration Nuance
I Filtering distribution given by

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (35)

I Expectation of an arbitrary f(x) is∫
f(xk)p(xk|y1:k)dxk =

1
η

∫
f(xk)p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1)dxk (36)

=
1
η

N∑
i=1

wi,k−1

∫
f(xk)p(yk|xk)p(xk|xi,k−1)dxk. (37)

I By using (35) in an arbitrary Monte Carlo solver, we develop a set of particles that
approximate the integral in (36).

I By using the N integrands in (37) in an arbitrary Monte Carlo solver, we develop a set of
particles that approximate the sum of the integrals in (37).

19/30

Integration Nuance
I Filtering distribution given by

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (35)

I Expectation of an arbitrary f(x) is∫
f(xk)p(xk|y1:k)dxk =

1
η

∫
f(xk)p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1)dxk (36)

=
1
η

N∑
i=1

wi,k−1

∫
f(xk)p(yk|xk)p(xk|xi,k−1)dxk. (37)

I By using (35) in an arbitrary Monte Carlo solver, we develop a set of particles that
approximate the integral in (36).

I By using the N integrands in (37) in an arbitrary Monte Carlo solver, we develop a set of
particles that approximate the sum of the integrals in (37).

19/30

Integration Nuance
I Filtering distribution given by

p(xk|y1:k) =
1
η

p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1). (35)

I Expectation of an arbitrary f(x) is∫
f(xk)p(xk|y1:k)dxk =

1
η

∫
f(xk)p(yk|xk)

N∑
i=1

wi,k−1p(xk|xi,k−1)dxk (36)

=
1
η

N∑
i=1

wi,k−1

∫
f(xk)p(yk|xk)p(xk|xi,k−1)dxk. (37)

I By using (35) in an arbitrary Monte Carlo solver, we develop a set of particles that
approximate the integral in (36).

I By using the N integrands in (37) in an arbitrary Monte Carlo solver, we develop a set of
particles that approximate the sum of the integrals in (37).

19/30

Sequential Monte Carlo with Importance Sampling
I Using importance sampling on (37) with proposal distribution q(xk|xi,k−1) gives

p(xk|y1:k) ≈
N∑

i=1

wi,k−1
p(yk|xk)p(xk|xi,k−1)

q(xk|xi,k−1)
δ(x− xi,k) xi,k ∼ q(xk|xi,k−1). (38)

I The sequential update is then

xi,k ∼ q(xk|xi,k−1), (39)

wi,k ← wi,k−1
p(yk|xi,k)p(xi,k|xi,k−1)

q(xi,k|xi,k−1)
. (40)

I This is called Sequential Importance Sampling.

I Setting q(xk|xi,k−1) = p(xk|xi,k−1) is the bootstrap particle filter.

I Running an MCMC method on each integral of (38), after resampling, corresponds to the
resample-move algorithm. Only the last sample in the chain is kept.

20/30

Sequential Monte Carlo with Importance Sampling
I Using importance sampling on (37) with proposal distribution q(xk|xi,k−1) gives

p(xk|y1:k) ≈
N∑

i=1

wi,k−1
p(yk|xk)p(xk|xi,k−1)

q(xk|xi,k−1)
δ(x− xi,k) xi,k ∼ q(xk|xi,k−1). (38)

I The sequential update is then

xi,k ∼ q(xk|xi,k−1), (39)

wi,k ← wi,k−1
p(yk|xi,k)p(xi,k|xi,k−1)

q(xi,k|xi,k−1)
. (40)

I This is called Sequential Importance Sampling.

I Setting q(xk|xi,k−1) = p(xk|xi,k−1) is the bootstrap particle filter.

I Running an MCMC method on each integral of (38), after resampling, corresponds to the
resample-move algorithm. Only the last sample in the chain is kept.

20/30

Sequential Monte Carlo with Importance Sampling
I Using importance sampling on (37) with proposal distribution q(xk|xi,k−1) gives

p(xk|y1:k) ≈
N∑

i=1

wi,k−1
p(yk|xk)p(xk|xi,k−1)

q(xk|xi,k−1)
δ(x− xi,k) xi,k ∼ q(xk|xi,k−1). (38)

I The sequential update is then

xi,k ∼ q(xk|xi,k−1), (39)

wi,k ← wi,k−1
p(yk|xi,k)p(xi,k|xi,k−1)

q(xi,k|xi,k−1)
. (40)

I This is called Sequential Importance Sampling.

I Setting q(xk|xi,k−1) = p(xk|xi,k−1) is the bootstrap particle filter.

I Running an MCMC method on each integral of (38), after resampling, corresponds to the
resample-move algorithm. Only the last sample in the chain is kept.

20/30

Sequential Monte Carlo with Importance Sampling
I Using importance sampling on (37) with proposal distribution q(xk|xi,k−1) gives

p(xk|y1:k) ≈
N∑

i=1

wi,k−1
p(yk|xk)p(xk|xi,k−1)

q(xk|xi,k−1)
δ(x− xi,k) xi,k ∼ q(xk|xi,k−1). (38)

I The sequential update is then

xi,k ∼ q(xk|xi,k−1), (39)

wi,k ← wi,k−1
p(yk|xi,k)p(xi,k|xi,k−1)

q(xi,k|xi,k−1)
. (40)

I This is called Sequential Importance Sampling.

I Setting q(xk|xi,k−1) = p(xk|xi,k−1) is the bootstrap particle filter.

I Running an MCMC method on each integral of (38), after resampling, corresponds to the
resample-move algorithm. Only the last sample in the chain is kept.

20/30

Sequential Monte Carlo with Importance Sampling
I Using importance sampling on (37) with proposal distribution q(xk|xi,k−1) gives

p(xk|y1:k) ≈
N∑

i=1

wi,k−1
p(yk|xk)p(xk|xi,k−1)

q(xk|xi,k−1)
δ(x− xi,k) xi,k ∼ q(xk|xi,k−1). (38)

I The sequential update is then

xi,k ∼ q(xk|xi,k−1), (39)

wi,k ← wi,k−1
p(yk|xi,k)p(xi,k|xi,k−1)

q(xi,k|xi,k−1)
. (40)

I This is called Sequential Importance Sampling.

I Setting q(xk|xi,k−1) = p(xk|xi,k−1) is the bootstrap particle filter.

I Running an MCMC method on each integral of (38), after resampling, corresponds to the
resample-move algorithm. Only the last sample in the chain is kept.

20/30

Demo - A Simple Example
I Vector state xk ∈ R2.

I Single integrator process model,

xk+1 = xk + uk + vk, vk ∼ N (0,Qk). (41)

I Range measurement to anchor in the center of the scene,

yk = ‖xk‖2
2 + wk, wk ∼ N (0,R). (42)

21/30

Resampling
I The problem of all but a few weights going to zero is called the sample degeneracy problem.

I Addressed by resampling in more probable regions. Given

p(x) ≈
N∑

i=1

wiδ(x− xi), (43)

draw a new set xj from the discrete distribution

P(xj) = wj, xj ∈ {x1, . . . , xi, . . . xN}. (44)

I Concentrates particles in more likely regions.

I Can cause sample impoverishment where particles lose diversity.

I Adaptive resampling - resample only when needed. For exaple, use effective number of
particles as a threshold,

neff ≈
1∑N

i=1 w(i)
k

2 . (45)

22/30

Resampling
I The problem of all but a few weights going to zero is called the sample degeneracy problem.

I Addressed by resampling in more probable regions. Given

p(x) ≈
N∑

i=1

wiδ(x− xi), (43)

draw a new set xj from the discrete distribution

P(xj) = wj, xj ∈ {x1, . . . , xi, . . . xN}. (44)

I Concentrates particles in more likely regions.

I Can cause sample impoverishment where particles lose diversity.

I Adaptive resampling - resample only when needed. For exaple, use effective number of
particles as a threshold,

neff ≈
1∑N

i=1 w(i)
k

2 . (45)

22/30

Resampling
I The problem of all but a few weights going to zero is called the sample degeneracy problem.

I Addressed by resampling in more probable regions. Given

p(x) ≈
N∑

i=1

wiδ(x− xi), (43)

draw a new set xj from the discrete distribution

P(xj) = wj, xj ∈ {x1, . . . , xi, . . . xN}. (44)

I Concentrates particles in more likely regions.

I Can cause sample impoverishment where particles lose diversity.

I Adaptive resampling - resample only when needed. For exaple, use effective number of
particles as a threshold,

neff ≈
1∑N

i=1 w(i)
k

2 . (45)

22/30

Resampling
I The problem of all but a few weights going to zero is called the sample degeneracy problem.

I Addressed by resampling in more probable regions. Given

p(x) ≈
N∑

i=1

wiδ(x− xi), (43)

draw a new set xj from the discrete distribution

P(xj) = wj, xj ∈ {x1, . . . , xi, . . . xN}. (44)

I Concentrates particles in more likely regions.

I Can cause sample impoverishment where particles lose diversity.

I Adaptive resampling - resample only when needed. For exaple, use effective number of
particles as a threshold,

neff ≈
1∑N

i=1 w(i)
k

2 . (45)

22/30

Resampling
I The problem of all but a few weights going to zero is called the sample degeneracy problem.

I Addressed by resampling in more probable regions. Given

p(x) ≈
N∑

i=1

wiδ(x− xi), (43)

draw a new set xj from the discrete distribution

P(xj) = wj, xj ∈ {x1, . . . , xi, . . . xN}. (44)

I Concentrates particles in more likely regions.

I Can cause sample impoverishment where particles lose diversity.

I Adaptive resampling - resample only when needed. For exaple, use effective number of
particles as a threshold,

neff ≈
1∑N

i=1 w(i)
k

2 . (45)

22/30

Rao-Blackwellization

Partition state into non-Gaussian part u and conditionally Gaussian part x.

23/30

Rao-Blackwellization

Partition state into non-Gaussian part u and conditionally Gaussian part x.
23/30

Rao-Blackwellization

x3

x4

x2

x1

p(x3|u(i))

p(x2|u(i))
p(x1|u(i))

p(u)

p(x4|u(i))

u(0)
u(1)

u(3)

Partition state into non-Gaussian part u and conditionally Gaussian part x.
23/30

Rao-Blackwellization
I Models of form

p(xk|xk−1,uk−1) = N (xk; f(xk−1,uk−1)),Qk−1(uk−1)), (46)
p(yk|xk,uk) = N (yk; g(xk,uk),Rk(uk)), (47)
p(uk|uk−1) ∼ Any distribution. (48)

where uk is non-Gaussian part of the state.

I State belief

p(xk,uk|y1:k) =

N∑
i=1

w(i)
k δ
(

uk − u(i)
k

)
N
(

xk; x̂(i)
k , P̂(i)

k

)
. (49)

I State part x is conditionally Gaussian given u,

p(xk|uk, y1:k) =
N∑

j=1

I(uj = uk)N (xk|x(j)
k ,P(j)

k). (50)

where I(∗) is the indicator function that is equal to one if the input condition is fulfilled, and
zero if not.

24/30

Rao-Blackwellization
I Models of form

p(xk|xk−1,uk−1) = N (xk; f(xk−1,uk−1)),Qk−1(uk−1)), (46)
p(yk|xk,uk) = N (yk; g(xk,uk),Rk(uk)), (47)
p(uk|uk−1) ∼ Any distribution. (48)

where uk is non-Gaussian part of the state.

I State belief

p(xk,uk|y1:k) =

N∑
i=1

w(i)
k δ
(

uk − u(i)
k

)
N
(

xk; x̂(i)
k , P̂(i)

k

)
. (49)

I State part x is conditionally Gaussian given u,

p(xk|uk, y1:k) =
N∑

j=1

I(uj = uk)N (xk|x(j)
k ,P(j)

k). (50)

where I(∗) is the indicator function that is equal to one if the input condition is fulfilled, and
zero if not.

24/30

Rao-Blackwellization
I Models of form

p(xk|xk−1,uk−1) = N (xk; f(xk−1,uk−1)),Qk−1(uk−1)), (46)
p(yk|xk,uk) = N (yk; g(xk,uk),Rk(uk)), (47)
p(uk|uk−1) ∼ Any distribution. (48)

where uk is non-Gaussian part of the state.

I State belief

p(xk,uk|y1:k) =

N∑
i=1

w(i)
k δ
(

uk − u(i)
k

)
N
(

xk; x̂(i)
k , P̂(i)

k

)
. (49)

I State part x is conditionally Gaussian given u,

p(xk|uk, y1:k) =

N∑
j=1

I(uj = uk)N (xk|x(j)
k ,P(j)

k). (50)

where I(∗) is the indicator function that is equal to one if the input condition is fulfilled, and
zero if not.

24/30

Rao-Blackwellization
I The Bayes filter takes the form,

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (51)

=
1
η

p(xk|uk, yk−1:k)p(yk|uk, yk−1)p(uk|yk−1) (52)

I The predicted distribution of u is given by the Chapman-Kolmogorov equation,

p(uk|yk−1) =

∫
p(uk|uk−1)p(uk−1|yk−1)duk−1 (53)

=

∫
p(uk|uk−1)

N∑
i=1

wi
k−1δ(uk−1 − u(i)

k−1)duk−1 (54)

=

N∑
i=1

wi
k−1p(uk|u(i)

k−1). (55)

25/30

Rao-Blackwellization
I The Bayes filter takes the form,

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (51)

=
1
η

p(xk|uk, yk−1:k)p(yk|uk, yk−1)p(uk|yk−1) (52)

I The predicted distribution of u is given by the Chapman-Kolmogorov equation,

p(uk|yk−1) =

∫
p(uk|uk−1)p(uk−1|yk−1)duk−1 (53)

=

∫
p(uk|uk−1)

N∑
i=1

wi
k−1δ(uk−1 − u(i)

k−1)duk−1 (54)

=

N∑
i=1

wi
k−1p(uk|u(i)

k−1). (55)

25/30

Rao-Blackwellization - Prediction step for non-Gaussian state
I Importance sampling. Define q(uk|ui

k−1) and sample a u(i)
k with corresponding predicted weight

w̌(i)
k = w(i−1)

k

p(u(i)
k |u

(i)
k−1)

q(u(i−1)
k |u(i)

k−1)
. (56)

I The predicted distribution on uk is thus

p(uk|yk−1) =
N∑

i=1

w̌(i)
k δ(uk − u(i)

k). (57)

26/30

Rao-Blackwellization - Prediction step for non-Gaussian state
I Importance sampling. Define q(uk|ui

k−1) and sample a u(i)
k with corresponding predicted weight

w̌(i)
k = w(i−1)

k

p(u(i)
k |u

(i)
k−1)

q(u(i−1)
k |u(i)

k−1)
. (56)

I The predicted distribution on uk is thus

p(uk|yk−1) =

N∑
i=1

w̌(i)
k δ(uk − u(i)

k). (57)

26/30

Rao-Blackwellization - Correction step for non-Gaussian state
I The correction consists of updating the weights using the marginal likelihood p(yk|uk, yk−1),

which is obtained by

p(yk|uk, yk−1) =

∫
p(yk, xk|uk, yk−1)dxk (58)

=

∫
p(yk|xk,uk)p(xk|uk, yk−1)dxk, (59)

where p(xk|uk, yk−1) is given by

p(xk|uk, yk−1) =

N∑
i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k). (60)

I The likelihood (59) becomes

p(yk|uk, yk−1) =

N∑
i=1

w(i)
k−1I(ui = uk)

∫
p(yk|xk,uk)N

(
xk; x̌(i)

k , P̌(i)
k

)
dxk, (61)

where each integral obtained as the marginal measurement mean and covariance of the
Gaussian filter update.

27/30

Rao-Blackwellization - Correction step for non-Gaussian state
I The correction consists of updating the weights using the marginal likelihood p(yk|uk, yk−1),

which is obtained by

p(yk|uk, yk−1) =

∫
p(yk, xk|uk, yk−1)dxk (58)

=

∫
p(yk|xk,uk)p(xk|uk, yk−1)dxk, (59)

where p(xk|uk, yk−1) is given by

p(xk|uk, yk−1) =

N∑
i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k). (60)

I The likelihood (59) becomes

p(yk|uk, yk−1) =

N∑
i=1

w(i)
k−1I(ui = uk)

∫
p(yk|xk,uk)N

(
xk; x̌(i)

k , P̌(i)
k

)
dxk, (61)

where each integral obtained as the marginal measurement mean and covariance of the
Gaussian filter update.

27/30

Rao-Blackwellization - Updated Belief on non-Gaussian State
The likelihood (61) is thus combined with (57) to give

p(uk|yk−1:k) =

N∑
i=1

w(i)
k δ(uk − u(i)

k), (62)

with

u(i)
k ∼ q(u(i−1)

k |u(i)
k−1) (63)

w(i)
k = w(i−1)

k

p(u(i)
k |u

(i)
k−1)

q(u(i−1)
k |u(i)

k−1)︸ ︷︷ ︸
w̌(i)

k

∫
p(yk|xk,uk)N

(
xk; x̌(i)

k , P̌(i)
k

)
dxk. (64)

28/30

Rao-Blackwellization - Updating Conditionally Gaussian State
I The Bayes filter (51) becomes

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (65)

=
1
η

p(yk|xk,uk)p(xk|uk, yk−1)

N∑
i=1

w(i)
k δ(uk − u(i)

k)

(66)

=
1
η

p(yk|xk,uk)
N∑

i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k)
N∑

i=1

w(i)
k δ(uk − u(i)

k).

(67)

I Which simplifies to

p(xk,uk|yk−1:k) =
1
η

N∑
i=1

p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)w(i)
k δ(uk − u(i)

k) (68)

=
1
η

N∑
i=1

w(i)
k δ(uk − u(i)

k) p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)︸ ︷︷ ︸
Predict/Correct for each particle’s x

,

(69)

where the non-Gaussian state update for w(i)
k ,u(i)

k is given by (64).

29/30

Rao-Blackwellization - Updating Conditionally Gaussian State
I The Bayes filter (51) becomes

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (65)

=
1
η

p(yk|xk,uk)p(xk|uk, yk−1)

N∑
i=1

w(i)
k δ(uk − u(i)

k) (66)

=
1
η

p(yk|xk,uk)
N∑

i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k)
N∑

i=1

w(i)
k δ(uk − u(i)

k).

(67)

I Which simplifies to

p(xk,uk|yk−1:k) =
1
η

N∑
i=1

p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)w(i)
k δ(uk − u(i)

k) (68)

=
1
η

N∑
i=1

w(i)
k δ(uk − u(i)

k) p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)︸ ︷︷ ︸
Predict/Correct for each particle’s x

,

(69)

where the non-Gaussian state update for w(i)
k ,u(i)

k is given by (64).

29/30

Rao-Blackwellization - Updating Conditionally Gaussian State
I The Bayes filter (51) becomes

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (65)

=
1
η

p(yk|xk,uk)p(xk|uk, yk−1)

N∑
i=1

w(i)
k δ(uk − u(i)

k) (66)

=
1
η

p(yk|xk,uk)

N∑
i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k)

N∑
i=1

w(i)
k δ(uk − u(i)

k). (67)

I Which simplifies to

p(xk,uk|yk−1:k) =
1
η

N∑
i=1

p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)w(i)
k δ(uk − u(i)

k) (68)

=
1
η

N∑
i=1

w(i)
k δ(uk − u(i)

k) p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)︸ ︷︷ ︸
Predict/Correct for each particle’s x

,

(69)

where the non-Gaussian state update for w(i)
k ,u(i)

k is given by (64).

29/30

Rao-Blackwellization - Updating Conditionally Gaussian State
I The Bayes filter (51) becomes

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (65)

=
1
η

p(yk|xk,uk)p(xk|uk, yk−1)

N∑
i=1

w(i)
k δ(uk − u(i)

k) (66)

=
1
η

p(yk|xk,uk)

N∑
i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k)

N∑
i=1

w(i)
k δ(uk − u(i)

k). (67)

I Which simplifies to

p(xk,uk|yk−1:k) =
1
η

N∑
i=1

p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)w(i)
k δ(uk − u(i)

k) (68)

=
1
η

N∑
i=1

w(i)
k δ(uk − u(i)

k) p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)︸ ︷︷ ︸
Predict/Correct for each particle’s x

,

(69)

where the non-Gaussian state update for w(i)
k ,u(i)

k is given by (64).

29/30

Rao-Blackwellization - Updating Conditionally Gaussian State
I The Bayes filter (51) becomes

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (65)

=
1
η

p(yk|xk,uk)p(xk|uk, yk−1)

N∑
i=1

w(i)
k δ(uk − u(i)

k) (66)

=
1
η

p(yk|xk,uk)

N∑
i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k)

N∑
i=1

w(i)
k δ(uk − u(i)

k). (67)

I Which simplifies to

p(xk,uk|yk−1:k) =
1
η

N∑
i=1

p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)w(i)
k δ(uk − u(i)

k) (68)

=
1
η

N∑
i=1

w(i)
k δ(uk − u(i)

k) p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)︸ ︷︷ ︸
Predict/Correct for each particle’s x

, (69)

where the non-Gaussian state update for w(i)
k ,u(i)

k is given by (64).

29/30

Rao-Blackwellization - Updating Conditionally Gaussian State
I The Bayes filter (51) becomes

p(xk,uk|yk−1:k) =
1
η

p(xk|uk, yk−1:k)p(uk|yk−1:k) (65)

=
1
η

p(yk|xk,uk)p(xk|uk, yk−1)

N∑
i=1

w(i)
k δ(uk − u(i)

k) (66)

=
1
η

p(yk|xk,uk)

N∑
i=1

I(ui = uk)N (xk; x̌(i)
k , P̌(i)

k)

N∑
i=1

w(i)
k δ(uk − u(i)

k). (67)

I Which simplifies to

p(xk,uk|yk−1:k) =
1
η

N∑
i=1

p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)w(i)
k δ(uk − u(i)

k) (68)

=
1
η

N∑
i=1

w(i)
k δ(uk − u(i)

k) p(yk|xk,uk)N (xk; x̌(i)
k , P̌(i)

k)︸ ︷︷ ︸
Predict/Correct for each particle’s x

, (69)

where the non-Gaussian state update for w(i)
k ,u(i)

k is given by (64).
29/30

References I
Cappe, Olivier, Simon J. Godsill, and Eric Moulines (2007). “An Overview of Existing Methods and Recent

Advances in Sequential Monte Carlo”. In: Proceedings of the IEEE 95.5, pp. 899–924.
Doucet, Arnaud, Nando De Freitas, Neil James Gordon, et al. (2001). Sequential Monte Carlo methods in

practice. Vol. 1. 2. Springer.
Doucet, Arnaud, Adam M Johansen, et al. (2009). “A tutorial on particle filtering and smoothing: Fifteen years

later”. In: Handbook of nonlinear filtering 12.656-704, p. 3.
Särkkä, Simo and Lennart Svensson (2023). Bayesian filtering and smoothing. Vol. 17. Cambridge university

press.
Septier, François and Gareth W. Peters (2016). “Langevin and Hamiltonian Based Sequential MCMC for

Efficient Bayesian Filtering in High-Dimensional Spaces”. In: IEEE Journal of Selected Topics in Signal
Processing 10.2, pp. 312–327.

30/30

	References

