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1 Mahalanobis distance
This summary document is based on both Bar Shalom’s book [1] and the MECH600 Mahalanobis
distance slides. An estimator attempts to characterize the distribution on e as

e ∼ N (0,P), (1)

where P is the predicted covariance. To assess the estimator consistency, the squared Mahalanobis
distance, otherwise known as Normalized Estimate Error Squared (NEES), is defined as

d2 = eTP−1e. (2)

The square root of the NEES is called Mahalanobis distance, d. For a variable e that is indeed
characterized by covariance P, the Mahalanobis distance will have a defined mean and upper and
lower bounds with some confidence bounds. By comparing these to those computed through Monte
Carlo simulation, estimator performance is assessed.

1.1 Change of variables
Define the variable u as

u = Le, (3)
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where L is the result of a Cholesky factorization, P = LLT Then, the NEES may be rewritten as

d2 = uTLTP−1Lu (4)

= uTLTL−TL−1Lu (5)

= uTu. (6)

Furthermore, the covariance on u is identity since

E[uuT] = E[L−1eeTL−T] (7)

= L−1E[eeT]L−T (8)

= L−1PL−T (9)

= L−1LLTL−T (10)
= 1. (11)

The punchline is that, for an error characterized by P, the NEES is actually equal to

d2 = uTu (12)

=
k∑

i=1

u2i , ui ∼ N (0, 1). (13)

The sum of k independent squares of Gaussian variables with unity variance is the the well-known
chi-squared distribution.

1.2 Mean
The mean of the chi-squared distribution with k degrees of freedom can be obtained as

E[uTu] = E[tr(uTu)] (14)

= E[tr(uuT)] (15)

= tr(E[uuT]) (16)
= tr(1k×k) (17)
= k. (18)

where the trace properties were used

tr(AB) = tr(BA), (19)
E[tr(A)] = tr(E[A]), (20)

where (19) is the cyclic property of the trace and (20) follows from the linearity of the expectation
and trace operators.
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1.3 Bounds
The cumulative distribution function (CDF) of a probability distribution is given by

fCDF(x) =

∫ x

−∞
p(τ)dτ. (21)

Given a value x̄, fCDF(x̄) gives the probability that x is less than x̄,

fCDF(x̄) = P (x ≤ x̄). (22)

The CDF may be inverted to give the Probability Point Function (PPF),

fPPF(p) = f−1CDF(x). (23)

Given a probability P̄ , the PPF gives the value x̄ such that x is less than x̄ with probability P̄ ,

x̄ = fPPF(P̄ ) s.t. P̄ = P (x ≤ x̄). (24)

The probability P̄ is termed the confidence threshold.

The CDF and PPF functions are tabulated for common distributions, including the χ2 distribution.
They may be computed, for instance, with Python’s scipy package. Since the Mahalanobis distance
for any estimator run should follow the χ2

k distribution, the upper bound with a given confidence
interval may be determined using the CDF and PPF of the χ2

k distribution.

The lower bound may similarly be determined.

1.4 Single-sided versus double-sided tests
Consider a 95% confidence interval. A one sided probability region is obtained by cutting off
a single side of the probability distribution. For the upper bound case this will compute x̄ =
fPPF(0.95), which is a x̄ such that x ≤ x̄ with 95% confidence.

The two sided probability region is obtained by cutting off both sides of the probability distribution.
Two bounds are computed at values x̄min = fPPF(0.025) and x̄max = fPPF(0.975) such that x̄min ≤
x ≤ x̄max with 95% confidence. The single and double-sided χ2

k bounds are illustrated in Figures 1
and 2 respectively.

1.5 Monte Carlo Trials
In a Monte Carlo trials, N independent algorithm runs are conducted, each of which output se-
quences

{ei,n ∈ Rk,Pi,n ∈ Rk×k}, (25)

where ei,n is the error at the ith timestep and nth Monte Carlo trial, computed from the estimate
and ground truth and Pi,n is the covariance output by the estimator. Then the sum of the squared
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Figure 1: Illustration of single-sided χ2
k squared test.
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Figure 2: Illustration of double-sided χ2
k squared test.
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Figure 3: The average NEES for N = 200 Monte Carlo trials of an estimation problem with a
single integrator process model and range measurements to anchors.

Mahalanobis distances for each trial, at a specific timestep i, is given by

d2i =
N∑

n=0

eTi,nP−1i,nei,n (26)

=
N∑

n=1

uTu u ∼ N (0, 1k×k) (27)

=
kN∑
j=1

u2j uj ∼ N (0, 1), (28)

and is thus a chi-squared distribution χ2
kN with kN degrees of freedom. Therefore, for the upper

and lower bounds, kN degrees of input is used as the input to the probability point function when
computing the bounds. Furthermore, the squared Mahalanobis distance is typically normalized by
the number of trials, in which case the corresponding bounds are then divided by the number of
trials N .

The results for an example involving a two-dimensional position state with velocity and range
measurements are illustrated in Fig. 3. The NEES is computed and averaged for N = 200 Monte
Carlo runs. The number of degrees of freedom for computing the X 2

k distribution is given by
kN = 200 ∗ 2 = 400 and the resulting NEES is divided by N = 200 to yield the average NEES
over all the Monte Carlo runs.
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